
Design, Implementation and Testing of

Extended and Mixed Precision BLAS ∗

X. S. Li† J. W. Demmel‡ D. H. Bailey† G. Henry§ Y. Hida‡ J. Iskandar‡

W. Kahan‡ A. Kapur‡ M. C. Martin‡ T. Tung‡ D. J. Yoo‡

October 20, 2000

Abstract

This paper describes the design rationale, a C implementation, and conformance testing of
a subset of the new Standard for the BLAS (Basic Linear Algebra Subroutines): Extended and
Mixed Precision BLAS. Permitting higher internal precision and mixed input/output types and
precisions permits us to implement some algorithms that are simpler, more accurate, and some-
times faster than possible without these features. The new BLAS are challenging to implement
and test because there are many more subroutines than in the existing Standard, and because we
must be able to assess whether a higher precision is used for internal computations than is used
either for input or output variables. So we have developed an automated process of generating
and systematically testing these routines. Our methodology is applicable to languages besides
C. In particular, our algorithms used in the testing code would be very valuable to all the other
BLAS implementors. Our extra precision routines achieve excellent performance—close to half
of the machine peak Megaflop rate even for the Level 2 BLAS, when the data access is stride
one.

∗This research was supported in part by the National Science Foundation Cooperative Agreement No. ACI-
9619020, NSF Grant No. ACI-9813362, the Department of Energy Grant Nos. DE-FG03-94ER25219 and DE-
FC03-98ER25351, and gifts from the IBM Shared University Research Program, Sun Microsystems, and Intel. This
project also utilized resources of the National Energy Research Scientific Computing Center (NERSC) which is
supported by the Director, Office of Advanced Scientific Computing Research, Division of Mathematical, Information,
and Computational Sciences of the U.S. Department of Energy under contract number DE-AC03-76SF00098. The
information presented here does not necessarily reflect the position or the policy of the Government and no official
endorsement should be inferred.

†NERSC, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 (xiaoye@nersc.gov, dhbai-
ley@lbl.gov).

‡Computer Science Division, University of California, Berkeley, CA 94720 ({demmel, wkahan, yozo, anil,
djyoo}@cs.berkeley.edu, {iskandar, mcmartin, teresat}@cory.eecs.berkeley.edu}).

§Intel Corp, ESG-SSPD, Bldg. CO1-01, 15201 N.W. Greenbrier Parkway, Beaverton, OR 97006-5733
(greg.henry@intel.com).

1

Contents

1 Introduction 4

2 Rationale for Extended and Mixed Precision 6
2.1 Introduction . 6
2.2 Example 1: Iterative Refinement of Linear Systems and Least Squares Problems . . 8

2.2.1 Numerical Example . 10
2.3 Example 2: Avoiding Pivoting in Sparse Gaussian Elimination 14
2.4 Example 3: Accelerating Iterative Methods for Ax = b , like GMRES 15
2.5 Example 4: Mixed Real and Complex Arithmetic . 16
2.6 Example 5: Using Normal Equations Instead of QR for Least Squares 16
2.7 Example 6: Solving Ill-conditioned Triangular Systems 17
2.8 Example 7: Eigenvalues and Eigenvectors of Symmetric Matrices 18
2.9 Example 8: Cheap Error Bounds . 21

3 Implementation Techniques for Extended Precision 21
3.1 Introduction . 21
3.2 A Little More History of Extended Formats . 23
3.3 More about Double-Double . 27

3.3.1 Why Double-double is an attractive nuisance except for the BLAS 31
3.3.2 Performance of our double-double implementation 33

4 Summary of Design Decisions 37

5 Code Generation with M4 Macro Processor 39
5.1 Basic operations . 40
5.2 BLAS Functions . 41

6 Testing 41
6.1 Environmental Enquiries . 42
6.2 Testing DOT . 45

6.2.1 Generating input scalars and vectors . 46
6.2.2 Obtaining an accurate racc . 48

6.3 Testing SPMV and GBMV . 48
6.4 Testing the Complex and Mixed Precision Routines 49

6.4.1 Testing DOT . 49
6.4.2 Testing WAXPBY . 50
6.4.3 Testing HEMM . 50

6.5 Testing TRSV . 52
6.5.1 Testing Complex TRSV . 54

7 Conclusions and Future Work 54

A Error bound for inner product 59

2

B Smith’s Complex Division Algorithm with Scaling 61

3

1 Introduction

The Basic Linear Algebra Subprograms (BLAS) [36, 22, 21] have been widely used by both the linear
algebra community and the application community to produce fast, portable and reliable software.
Highly efficient machine-specific implementations of the BLAS are available for most modern high-
performance computers. Because of the success of these earlier BLAS, a BLAS Technical Forum was
established to consider expanding the BLAS in the light of modern software, language, and hardware
developments. The BLAS Technical Forum meetings began with a workshop in November 1995
at the University of Tennessee. Meetings were hosted by universities and software and hardware
vendors. Various working groups were established to consider such issues as the overall functionality;
language interfaces for Fortran 77, Fortran 95, and C; dense, banded, and sparse BLAS; and
extended and mixed precision BLAS. As a result, a new BLAS Standard is being established, and
the working groups have started implementing different parts of the Standard. The document for
the new BLAS Standard is available on-line [1].

In this paper, we describe the design rationale, a reference C implementation, and testing code
for a representative subset of the routines in the Extended and Mixed Precision BLAS [1, Chapter
4]. (This also contains the corresponding routines without extended and mixed precision that are
part of the Dense and Banded BLAS [1, Chapter 2].) Extended and mixed precision, which we
define more carefully below, permit us to implement some algorithms that may be simpler, more
accurate, and sometimes even faster than without it. We give numerous examples in section 2.

Extended precision is only used internally in the BLAS; the input and output arguments remain
just Single or Double as in the existing BLAS. For the internal precision, we allow Single, Double,
Indigenous, or Extra. In our reference implementation we assume that Single and Double are the
corresponding IEEE floating point formats [3]. Indigenous means the widest hardware-supported
format available. Its intent is to let the machine run close to top speed, while being as accurate as
possible. On some machines this would be a 64-bit (Double) format, but on others such as Intel ma-
chines it means the 80-bit IEEE format (which has 64 fraction bits). Our reference implementation
currently supports machines on which Indigenous is the same as Double. Extra means anything at
least 1.5 times as accurate as Double, and in particular wider than 80 bits. An existing quadruple
precision format could be used to implement Extra precision, but we cannot assume that the lan-
guage or compiler supports any format wider than Double. So for our reference implementation,
we use a technique called double-double in which extra precise numbers are represented by a pair
of double precision numbers [6], providing about 106 bits of precision. Section 3 discusses a variety
of implementation techniques for precision beyond double.

In particular, our design goal does not include a general extended precision capability as in
systems like Mathematica [51], Maple [40] and others, where all variables, arithmetic operations,
and intrinsic functions can have arbitrarily high precision. Instead, we are interested in enhancing
conventional floating point algorithms written in C or Fortran, with support only for the conven-
tional single and double precision data types. In other words, we are interested in applications
where performance remains a primary concern, and our job is either to improve that performance,
or make algorithms more accurate or simpler without lowering performance significantly if at all.

The subroutines implementing extra precision look like their conventional counterparts, but
have an an additional argument PREC at the end. PREC is a runtime variable specifying whether
the internal precision used for the computation should be Single, Double, Indigenous, or Extra.

Mixed precision permits some input/output arguments to be of different mathematical types,

4

meaning real and complex, or different precisions, meaning single and double. This permits such
operations as real-by-complex matrix multiplication, which can rather faster than using alternatives
that do not mix precision. A parsimonious subset of the many possible combinations of arguments
types and precisions is mandated. The mixed precision routines are similar to their conventional
counterparts, except that they include versions for each permitted input type combination. Rou-
tines that combine mixed and extended precision (the PREC argument) are also included.

The multitude of precisions and types means that the Extended and Mixed Precision BLAS
contains many more routines than their conventional counterparts. This motivated us to generate
them automatically from a single template. Since the BLAS Technical Forum voted to support C
and Fortran 77 interfaces, and these languages do not permit us to write a single source to handle
all desired type combinations, we decided to use the M4 macro package for automatic program
generation. We note that conventional operator overloading mechanisms in Fortran 95 and C++
that choose the precision of an operation based only on on the input arguments are not adequate
to generate our algorithms. This is described in section 5.

It is a challenge to design portable and reliable test routines that confirm whether a routine with
arguments of one type and precision uses a higher internal precision, indeed a precision (like Extra)
that is higher than any language and compiler supported format. Most of our design effort went
into designing this test code, which we describe in detail in section 6. We use a variety of algebraic
identities and tricks to automatically generate test data that will make the internal precision visible
through black box testing. These techniques should be valuable for other testing efforts as well.

The complete list of BLAS routines for which we decided Extended and Mixed Precision coun-
terparts were worthwhile is given below. (Some routines, like computing

√∑n
i=1 |xi|2, hardly benefit

from extra precision and so are excluded.) The routines not included in our current reference im-
plementation are marked “omitted”. The omitted routines offer no more technical challenges than
those already included, and will be released at a later date. For simplicity, formulas are only given
for the real versions; the complex ones permit some arguments to be conjugated.

• Level 1

– DOT (inner product) r := α ·∑n
i=1 xi · yi + β · r

– SUM (sum) s :=
∑n

i=1 xi

– AXPBY (Scaled vector accumulation) yi := α · xi + β · yi

– WAXPBY (Scaled vector addition) wi := α · xi + β · yi

• Level 2

– GEMV (General matrix vector product) y := α · A · x + β · y or y := α ·AT · x + β · y
– GBMV (Banded matrix vector product) (same mathematical formulas as GEMV)

– SPMV (Symmetric matrix vector product, packed format) (same mathematical formulas
as GEMV)

– omitted: SYMV (Symmetric matrix vector product)

– omitted: SBMV (Symmetric band matrix vector product)

– TRSV (Triangular solve) x := α · T−1 · x or x := α · T−T · x
– omitted: TBSV (Band triangular solve)

5

– omitted: TPSV (Packed triangular solve)

• Level 3

– GEMM (General matrix matrix product) C := α ·A ·B + β ·C, either A and/or B may
be transposed

– SYMM (Symmetric matrix matrix product) C := α ·A ·B +β ·C or C := α ·B ·A+β ·C
– omitted: TRMM (Triangular matrix matrix product)

– omitted: TRSM (Triangular matrix solve)

– omitted: SYRK (Symmetric rank k update)

– omitted: SYR2K (Symmetric rank 2k update)

The rest of the paper is organized as follows. Section 2 gives the rationale and motivating exam-
ples for standardizing the extended and mixed precision BLAS. This includes an extended example
showing how linear systems can be solved more accurately using only an extra precise matrix-vector
product routine. Section 3 surveys various implementation techniques for extended precision, both
in hardware and software, including performance data for our reference implementation. When the
data access is in stride one, our extra precision routines achieve sustained Megaflop rates of close
to half of the machine peak for both Level 2 and Level 3 BLAS. Section 4 summarizes our design
decisions based on the preceding discussions of the benefits and costs. Section 5 describes our
automatic code generator that easily accommodates the large number of new routines. Section 6
presents the core algorithms to test the correctness of all the functions. Section 7 summarizes the
issues in our design and discusses future work.

2 Rationale for Extended and Mixed Precision

2.1 Introduction

Our proposal to have extended and mixed precision in the BLAS is motivated by the following
facts:

• A number of important linear algebra algorithms can become simpler, more accurate and
sometimes faster if some internal computations carry more precision (and sometimes more
range) than is used for the input and output arguments. These include linear system solving,
least squares problems, and eigenvalue problems. Often the benefits of wider arithmetic cost
only a small fractional addition to the total work.

• For single precision input, the computer’s native double precision is a way to achieve these
benefits easily on all commercially significant computers, at least when only a few extra-
precision operations are needed. In our reference implementation, we assume single and
double precision correspond to the IEEE 32-bit and 64-bit formats. 1

1Some Crays and their emulators implement 64-bit single (REAL in Fortran) in hardware and much slower 128-bit
double (DOUBLE PRECISION in Fortran) in software, so if a great many double precision operations are needed, these
machines will slow down significantly.

6

• The overwhelming majority of computers on desktops, containing Intel processors or their
AMD and Cyrix clones, are designed to run fastest performing arithmetic to the full width,
80-bits, of their internal registers. These computers confer some benefits of wider arithmetic
at little or no performance penalty. Some BLAS on these computers already perform wider
arithmetic internally but, without knowing this for sure, programmers cannot exploit it.

• All computers can simulate quadruple precision or something like it in software at the cost of
arithmetic slower than double precision by at worst an order of magnitude. Less slowdown
is incurred for a rough double-double precision on machines (IBM RS/6000, PowerPC/Mac,
SGI/MIPS R8000, HP PA RISC 2.0) with special Fused Multiply-Accumulate instructions.
Since some algorithms require very little extra precise arithmetic to get a large benefit, the
slowdown is practically negligible.

Given the variety of implementation techniques hinted above, we need to carefully examine the
costs and benefits of exploiting various arithmetic features beyond the most basic ones, and choose
a parsimonious subset that gives as many benefits as possible with modest implementation cost.

We list the arithmetic features potentially available to us below:

Feature 1: Mixed precision. This means mixing single and double arguments, or real and com-
plex arguments, in a single BLAS call. For example, it can be much cheaper to multiply a
real by a complex matrix, than to convert the real matrix to complex and then multiply two
complex matrices. This is straightforward to implement.

Feature 2: Extra internal precision. This means using higher precision within a BLAS call,
with all high-precision variables hidden from the user. For example, a call to DGEMV
might perform a matrix-vector multiplication on IEEE double-precision inputs (with 53-bit
mantissas), but use an accumulator internally with a 64- or 106-bit mantissa. This is the
simplest way to introduce extra precision.

Feature 3: Wider internal range. This means using floating point numbers with a wider over-
flow/underflow range within a BLAS call, again with all such variables hidden from the user.
For example, a call to SNRM2 might compute the root-sum-of-squares of an IEEE single-
precision vector (with nonzero magnitudes in the range ≈ 10±38) by using an IEEE double
precision accumulator (with range ≈ 10±308). Wider range may not always be available at a
reasonable price.

Feature 4: Extra-wide variables. Rather than hiding all uses of extra precision or extra range
within BLAS calls, one could permit the user to declare extra-wide variables and use them
as input/output arguments. By this we mean using double precision (or quadruple precision)
variables when the working precision is single (or double), not the general mechanism in
Mathematica and Maple. Use of extra-wide variables offers the most flexibility to the user,
but if the program is already in double precision, quadruple (or other language and compiler-
supported wide precision) may not always be available.

Feature 5: Exception handling. IEEE arithmetic defines precise responses to exceptional events
like overflow, underflow, division-by-zero, invalid operations (like

√−1), and inexact [3, 4].
In particular, it has rules for arithmetic with NaNs (Not-a-Number symbols) (produced by

7

√−1, 0/0, etc.) and ±∞ (produced by overflow, 1/0, etc.). It also defines flags that the user
can reset and later test to see if any exception has occurred since resetting them. This feature
can let us use simpler and faster algorithms that rarely generate exceptions, and afterwards
check for these exceptions and recompute the answer slowly and carefully only if necessary
[15]. Unfortunately, languages and compilers do not support access to exception handling in
a uniform way.

The rest of this section lists a variety of compelling examples that exploit the arithmetic features
above, and categorizes them according to which features they use. Using these examples, Section 4
will present and justify our design decisions.

2.2 Example 1: Iterative Refinement of Linear Systems and Least Squares
Problems

Given a triangular factorization of a matrix A, we can solve Ax = b by forward and back substitu-
tion. In practice the relative error of this algorithm is almost always bounded by

‖xcomputed − xtrue‖
‖xtrue‖ = O(N · κ(A) · ε)

where ‖ · ‖ denotes the norm of a matrix or vector, κ(A) = ‖A‖ · ‖A−1‖ ≥ 1 is the condition number
of A, N is its dimension, and ε is the input/output precision (for example 2−53 ≈ 10−16 in double
precision). We expect the error to be at least about ε, just from rounding the true solution to
a vector xcomputed of floating point numbers. We expect a large error when κ(A) � 1, i.e. the
problem is ill-conditioned, which is frequently the case for problems of interest. It turns out that
using a little bit of extra precision, we can eliminate N · κ(A) from the error bound, and so get an
accurate answer nearly independently of N and condition number κ(A).

To achieve this, we use the following iterative refinement algorithm to improve the accuracy of
the solution:

Repeat
Compute the residual r = b−A · x
Solve A · d = r for d using the existing factorization
Update the solution x = x + d

Until {r or d is small enough or stops decreasing, or a maximum iteration count is exceeded}.
LAPACK currently implements this iterative refinement algorithm entirely in the input/output

precision, such as in routine xGERFS [2]. What it accomplishes, according to a well understood
error-analysis [16, 27], is essentially to replace the condition number κ(A) in the error bound by
another possibly smaller one, which can be as small as minD κ(D ·A), where the minimum is over
all diagonal matrices D. In effect, this algorithm compensates, up to a point, for bad row-scaling.
The residual is never worsened but the solution x, though usually improved, frequently gets worse
if this last condition number is very big.

An improved version of iterative refinement, which nearly eliminates κ(A) from the final error
bounds, differs from LAPACK’s in two places. First, the residual r = b− A · x is accumulated in
twice the input/output precision and then, after massive cancellation has taken place, is rounded to
input/output precision. Second, refinement is stopped after x appears to have settled down about

8

as much as it ever will. Now another classical error analysis [27] says that the ultimate relative
error will be bounded by O(ε), essentially independent of the condition number and dimension of
A. This assumes that N · κ(A) is not comparable with or bigger than 1/ε (in which case A could
be made exactly singular by a few rounding errors in its entries). In short, the improved iterative
refinement almost always produces the correct solution x, and almost always gives fair warning
otherwise.

If the improved algorithm’s residual r is accumulated to sufficiently more than input/output
precision but less than twice as much, its improvement over what LAPACK obtains currently
becomes proportionately weakened. In extensive experiments on machines with 80-bit registers,
i.e. 11 more bits of precision than double, iterative refinement either returned the solution correct
to all but the last few bits, or with at least 10 more correct bits than without refinement [32].

The current LAPACK algorithm does not have to change much to benefit from a more accurate
residual: ε has to be replaced in a few places by a roundoff threshold that reflects the possibly
extra-precise accumulation of r; and if this latter threshold is sufficiently smaller than ε then the
iteration’s stopping criterion should be changed from testing r to testing x and d, and an estimate
of the error in x should be obtained not from the current condition estimator but instead (at lower
cost) from the last few vectors d.

The indispensable requirement is an extra-precise version of matrix-vector product, i.e. GEMV
in the Level 2 BLAS (Feature 2: Extra internal precision). One iteration of refinement costs
only 4 · N2 flops per right-hand side column b. If, as usual, there are only a few columns b and
at most a few iterations suffice, their cost is asymptotically negligible compared to the O(N3)
operations required to compute the LU or other factorization in the first place, even if extra-precise
operations run somewhat slowly. Therefore, we want to be able to insist that GEMV use extra
precision, even if it is expensive.

An extended numerical example is given below in section 2.2.1.
The availability of extra-precise residuals would make it possible to solve many other linear

algebra problem more accurately as well. The simplest example is the overdetermined least squares
problem: choosing x to minimize ‖A · x− b‖2. This can be formulated as the linear system[

I A
AT 0

]
·
[
−r
x

]
=

[
b
0

]

and refined using the QR decomposition of A from which the initial solution x was obtained. As
with general linear systems, the final error depends much less upon the condition number of A
(though the situation is a bit more complicated than a simple linear system). Again, an extra
precise matrix-vector product is indispensable (Feature 2: Extra internal precision), and its
cost is asymptotically small provided that A is not too far from square.

Iterative refinement for eigenproblems is still a topic for research, but recent results are encour-
aging. The indispensable requirement is a matrix residual

R = A ·X − Y ·B =
[

A −Y
]
·
[

X
B

]

accumulated extra-precisely and rounded back to input/output precision after massive cancellation
has taken place. Sometimes Y = X; sometimes B is diagonal or triangular. Such residuals can be
computed from one call to a matrix-matrix-product (GEMM) that accumulates extra-precisely, but

9

a lot of memory traffic can be avoided if versions of GEMM that accept and produce extra-precise
matrices are available too (Feature 4: Extra-wide variables).

Iterative refinement of nonsymmetric eigenproblems, other than Schur decompositions, depends
crucially upon how well iterative refinement works for nearly singular linear systems. For best re-
sults, the LU factorization should ideally be performed by Crout factorization with extra-precisely
accumulated scalar products, but how much good this would do is not yet clear. Exception han-
dling (Feature 5) is important too because infinity and 0/0 turn up in the better mathematical
algorithms mentioned above unless entirely algebraic computations are replaced in spots by invo-
cations of transcendental functions elementwise upon arrays. The last question remaining is how
much precision would be needed to perform an entire eigencalculation by conventional means, with-
out refinement, to obtain results as good and as soon as are obtained from refinement with a little
extra-precise arithmetic in the program; experience indicates that a high precision conventional
algorithm without refinement is much more expensive than with refinement.

2.2.1 Numerical Example

In this section we study a (well-known) numerical example illustrating the benefits of extra-precise
iterative refinement. We used the linear system (L ·Hn) ·x = (L ·b), where Hn is the Hilbert matrix
of dimension n, b is the j-th column of the identity matrix (which we denote by Ij in the Figures),
and L is a scale factor chosen so that L · Hn and L · b have integer entries representable without
roundoff. The Hilbert matrix H has elements hij = 1/(i + j − 1). We chose the Hilbert matrix
because (1) it is very sensitive to roundoff errors, with condition numbers increasing rapidly (see
Table 1), and (2) its inverse is known exactly and so we can compute the true solution. L is the
least common multiple of all the i + j − 1, 1 ≤ i, j ≤ n.

n 2 3 4 5 6 7 8 9
κ2(Hn) 1.9e01 5.2e02 1.6e04 4.8e05 1.5e07 4.8e08 1.5e10 4.9e11

Table 1: Condition numbers of Hilbert matrix [27, pp. 516].

Figures 1, 2 and 3 show the convergence history of iterative refinement, with progressively in-
creasing n. We use both the LAPACK routine SSPRFS (single precision, symmetric and packed) and
our modification to it with SSPMV replaced by our extended precision version. In this experiment,
we let the code run 20 iterations, because the examples are very ill-conditioned with respect to
single precision (ε ≈ 5.96e-08). In practice, one or two iterations often suffice. In each figure, we
plot five quantities (‖v‖∞ ≡ maxi |vi|).

1. Forward error bound FERR on x computed by LAPACK (see [16] for the derivation):

‖x− xtrue‖∞
‖x‖∞ ≤ FERR ≡ || |A

−1| · (|r|+ nε(|A| · |x|+ |b|) ||∞
||x||∞

2. Componentwise relative backward error [16], computed by LAPACK, which is the smallest
relative perturbation in each matrix entry necessary to make the computed x the exact
solution of the perturbed problem:

BERR ≡ max
i

|r|i
(|A| |x|+ |b|)i

10

2 4 6 8 10 12 14 16 18 20
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Single precision iterative refinement: L * H
6
 * x = L * I

5

FERR
BERR
	Xtrue − X		/		Xtrue	
	dXi		/		Xi	
	dxi+1		/		dxi	

2 4 6 8 10 12 14 16 18 20
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Double precision iterative refinement: L * H
6
 * x = L * I

5

FERR
BERR
	Xtrue − X		/		Xtrue	
	dXi		/		Xi	
	dxi+1		/		dxi	

2 4 6 8 10 12 14 16 18 20
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Extra precision iterative refinement: L * H
6
 * x = L * I

5

FERR
BERR
	Xtrue − X		/		Xtrue	
	dXi		/		Xi	
	dxi+1		/		dxi	

Figure 1: Iterative refinement results in Single, Double and Extra precision, n = 6, j = 5.

11

2 4 6 8 10 12 14 16 18 20
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Single precision iterative refinement: L * H
7
 * x = L * I

5

FERR
BERR
	Xtrue − X		/		Xtrue	
	dXi		/		Xi	
	dxi+1		/		dxi	

2 4 6 8 10 12 14 16 18 20
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Double precision iterative refinement: L * H
7
 * x = L * I

5

FERR
BERR
	Xtrue − X		/		Xtrue	
	dXi		/		Xi	
	dxi+1		/		dxi	

2 4 6 8 10 12 14 16 18 20
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Extra precision iterative refinement: L * H
7
 * x = L * I

5

FERR
BERR
	Xtrue − X		/		Xtrue	
	dXi		/		Xi	
	dxi+1		/		dxi	

Figure 2: Iterative refinement results in Single, Double and Extra precision, n = 7, j = 5.

12

2 4 6 8 10 12 14 16 18 20
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Single precision iterative refinement: L * H
8
 * x = L * I

5

FERR
BERR
	Xtrue − X		/		Xtrue	
	dXi		/		Xi	
	dxi+1		/		dxi	

2 4 6 8 10 12 14 16 18 20
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Double precision iterative refinement: L * H
8
 * x = L * I

5

FERR
BERR
	Xtrue − X		/		Xtrue	
	dXi		/		Xi	
	dxi+1		/		dxi	

2 4 6 8 10 12 14 16 18 20
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Extra precision iterative refinement: L * H
8
 * x = L * I

5

FERR
BERR
	Xtrue − X		/		Xtrue	
	dXi		/		Xi	
	dxi+1		/		dxi	

Figure 3: Iterative refinement results in Single, Double and Extra precision, n = 8, j = 5.

13

3. The true error ||xtrue − x||∞/||xtrue||∞,

4. the normalized change in x between successive iterations ||xi+1 − xi||∞/||xi||∞, and

5. the ratio of changes of x between successive iterations ||xi+2 − xi+1||∞/||xi+1 − xi||∞.

In the labels in the figures, we let dxi = xi+1 − xi.
In Figure 1, four error measures become exactly zero after 3 or 4 steps, so nothing is plotted

afterwards. From this experiment, we made the following observations:

• The single precision iteration can effectively reduce BERR to near machine epsilon, although
it is slightly worse than the extended precisions. But it cannot reduce the true error of the
solution.

• Both double and extra precisions can reduce the true error to close to machine epsilon when
the condition number is comparable to or less than 1/ε (when n = 6 or n = 7 but not n = 8).
Using more than double the input/output precision gives comparable results to just using
double the input/output precision.

• The error bound FERR is good only when the iterative refinement is performed in single
precision. If extended precision is used, FERR may be arbitrarily pessimistic. Instead,
||dxi||/||xi|| should be used as the error bound.

Figure 4 is the plot of the relative errors after 20 steps, when using double precision and varying
the dimension n from 3 to 10. The vertical line in the figure corresponds to 1/ε. This also confirms
the theory that the improved iterative refinement always produces accurate solution as long as the
condition number is not bigger than 1/ε.

2.3 Example 2: Avoiding Pivoting in Sparse Gaussian Elimination

Sparse Gaussian Elimination is a challenging algorithm to implement efficiently because of the
high cost of constructing, traversing and modifying the dynamic data structures that are needed
to compute the pivot sequence and resulting fill-in of originally nonzero matrix entries. This cost
is especially acute on distributed memory parallel machines because known algorithms require
frequent fine-grained messages, and these are expensive. In contrast, sparse Cholesky is a special
case of Gaussian elimination applicable to symmetric positive definite matrices, for which any
pivot sequence is numerically stable. Sparse Cholesky has been satisfactorily parallelized because
the pivot sequence can be chosen ahead of time (i.e. independent of the values of the nonzero matrix
entries, or any intermediate results) to optimize load balance and fill-in, and the data structures
and communication patterns can be determined statically and more simply [25].

We would like to have an algorithm as parallelizable as sparse Cholesky but applicable to
completely general matrices. To do this we have designed a version of parallel sparse Gaussian
elimination called SuperLU [37] that avoids dynamic pivoting, and so permits the same optimiza-
tions as parallel sparse Cholesky. To retain numerical stability, we use a variety of techniques
including

1. prepivoting large matrix entries to the diagonal,

14

10
0

10
5

10
10

10
15

10
−15

10
−10

10
−5

10
0

Double precision iterative refinement: n = 3, ..., 10

Condition number

||
X

tr
u

e
 −

 X
||
 /
 |
|X

tr
u

e
||

1/eps

Figure 4: Iterative refinement results in Double precision, n = 3, ..., 10. Circles correspond to exact
zeros.

2. substituting tiny diagonal pivots by
√

ε‖A‖ (which reduces pivot growth at the price of losing
half the backward stability enjoyed by conventional pivoting), and

3. performing iterative refinement with extra precise residuals, as in Section 2.2 (Feature 2:
Extra internal precision).

Preliminary results, where double precision is used internally to achieve single precision accuracy
for the computed results [37], show that the above techniques do ensure satisfactory accuracy on a
set of challenging test matrices drawn from applications, and also show large speedups on suitably
large matrices.

If the above techniques do not get adequate accuracy (we encountered only one such matrix
in our extensive testing), then the following further techniques can be applied. One approach is
to organize the Gaussian elimination in a left-looking fashion, where each entry is updated by
the dot product of the corresponding row of L and column of U. For this update, we can call
the new DOT function (or GEMV/GEMM in a blocked algorithm). This only requires Feature
2: Extra internal precision. Another technique is to use this inaccurate LU factorization as
a preconditioner to an iterative solver, such as QMR or GMRES. For example, for the matrix
mentioned above, we achieved accurate solution with a few iterations of preconditioned GMRES.

2.4 Example 3: Accelerating Iterative Methods for Ax = b , like GMRES

The principle of iterative refinement can be applied to other equation solving methods as well, both
linear and nonlinear. The paper [49] replaces the solution of Ad = r via the LU factorization of A

15

by GMRES(m) [46] to get the correction d, and solves a linear system arising from a discretized
elliptic PDE as accurately as though the entire computation were done in double, but while doing
nearly all the work in single and so running much faster. The authors of [49] point out that
their observation could have been applied to any other efficient, restarted iterative solver besides
GMRES(m), such as GCR(m) [23], etc.

The algorithm in [49] differs slightly from the one in Section 2.2 in that the right hand side
b, the computed solution x, and the product A · x are kept in extended precision (double in their
experiments). In other words, they exploit Feature 4: Extra-wide variables, in addition to
Feature 2: Extra internal precision. It is not clear from [49] whether they really need extra-
wide variables, or whether the general scheme of Section 2.2 is adequate; we suspect that it is.

2.5 Example 4: Mixed Real and Complex Arithmetic

LAPACK auxiliary routine CLACRM multiplies a complex matrix A by a real matrix B. It is called
by the LAPACK routines for computing eigenvalues and eigenvectors of Hermitian matrices using
divide-and-conquer (CSTEDC, CLAED0 and CLAED7), currently one of two fastest available
algorithms for large matrices. It is similarly used by the complex SVD based on divide-and-
conquer. The alternative of promoting B to complex and calling the BLAS CGEMM would cost
3 times as many floating point operations (4 floating point multiplications and 2 additions per
solution component, instead of 2 multiplications). Since this routine is the most time-consuming
part of the divide-and-conquer algorithm, it is important that it go fast. Currently CLACRM is
implemented by copying the real part of A to contiguous workspace, calling SGEMM, copying the
result back, and repeating this for the imaginary part. It would be simpler and more efficient
(by avoiding these data copies) to have a matrix-matrix-product routine that accepted a real and
complex matrix (Feature 1: Mixed precision).

LAPACK auxiliary routines CLASR and CSROT apply one or more real 2-by-2 rotations Ri

to a complex matrix A. They are called by the LAPACK routines for computing eigenvalues and
eigenvectors of Hermitian matrices using QR iteration (CSTEQR), and by the complex SVD, and
are the bottlenecks in these routines, which are currently the fastest available algorithms for small
matrices. The alternative of promoting the Ri to complex would again triple the cost of the most
time-consuming part of QR iteration. Currently these routines are implemented in straightforward
(unoptimized) Fortran 77 but could be implemented as optimized BLAS with mixed precision
inputs and outputs (Feature 1: Mixed precision).

It is possible to define a very large number of mixed precision routines, not all of which are
useful. For example, the standard matrix-matrix product routine has five floating point arguments
(it computes αAB + βC). If each argument were independently permitted to have one of the 4
standard floating point types (single, double, single complex, double complex), then there would be
45 = 1024 different combinations, most of which would never be used. Instead, we have identified
a small subset of just 12 mixed precision versions (plus the 4 conventional versions) to implement;
see section 4.

2.6 Example 5: Using Normal Equations Instead of QR for Least Squares

This example uses Feature 4: Extra-wide variables, to implement a faster algorithm for the
overdetermined least squares problem, i.e. finding the x that minimizes ‖Ax− b‖2. The algorithm

16

that uses the fewest floating point operations is to form the matrix AT · A and then solve the
so-called normal equations

(AT ·A) · x = AT · b
by Cholesky. This requires about half as many flops as the alternative QR-based approach when
the number of rows m of A is much larger than the number of columns n. The trouble is that using
the normal equations instead of QR can effectively square the condition number of the problem, and
can lose twice as much accuracy. The remedy is to form and solve the normal equations in twice the
input/output precision. Unless the condition number is near 1/ε, this can be much more accurate
than the QR-based approach in single precision. If we use more than input/output precision but
less than twice as much, the error bound is proportionately more.

If m is sufficiently larger than n, and the cost of extra precise arithmetic is less than twice the
cost of arithmetic in the input/output precision, then this algorithm will be faster than the existing
QR based algorithm.

Preliminary benchmarks on a Pentium Pro indicate that forming and solving the normal equa-
tions using 80-bit extended arithmetic can be significantly faster than running LAPACK’s imple-
mentation of QR, provided m is much larger than n. For example, with m = 400 and n = 20, the
normal equation were 3 times faster than QR, i.e. faster than mere operation counts can explain.
As n grows, the normal equations slow down with respect to QR, with about equal runtimes at
n = 45, and with QR 20 times faster for n = 400. For m = 500 and n = 5, the normal equations
were 39 times faster than QR!

Here is why the normal equations approach cannot be implemented solely with high precision
restricted to internal precision for the BLAS. We need to be able to compute, return, and continue
computing with AT · A and (AT) · b in higher precision. This means that we have to be able to
declare variables of these types, not just have anonymous variables. Some languages do not permit
declaring such high precision variables. Furthermore, Cholesky requires a square root, although
LU could be used instead.

There is a family of Least Squares problems for which extended BLAS are necessary, but
not the declaration of higher precision variables. These are simple three-dimensional nearest-point
problems: Find the point in a given line or plane nearest another given line or point. These problems
have explicit solutions expressed in terms of scalar- and cross-products [31, pp. 48–55]. Many
another geometrical problem is solved by computing bilinear and quadratic forms during which
massive cancellation is brought about by near-degenerate configurations that are incidental to the
solution of a larger and well-behaved problem. The incidence of geometrically inconsistent results,
or instead recourse to higher precision for all intermediate computations, can be diminished by
orders of magnitude, sometimes to zero, if BLAS with internal extra precision (Feature 2: Extra
internal precision) are used during the computation of those bilinear and quadratic forms. This
approach is particularly attractive on computers that can evaluate extended precision BLAS about
as fast as ordinary BLAS, as is the case for the overwhelming majority of computers on desktops
containing, as they do, Intel or clones inside.

2.7 Example 6: Solving Ill-conditioned Triangular Systems

The LAPACK subroutine SLATRS solves a triangular linear system T · x = scale · b with careful
scaling to prevent over/underflow (here scale is an output argument chosen by the algorithm to
avoid over/underflow). It is used instead of the Level 2 BLAS routine STRSV when we expect

17

very ill-conditioned triangular systems, and want to get the solution vector (with the scale factor)
despite the fact that it may be very large or very small. This is the case with condition estimation
(SGECON, SPOCON, STRCON) and inverse iteration to find eigenvectors of nonsymmetric matri-
ces (SLAEIN). SLATRS does careful scaling in the innermost loops to prevent over/underflow, and
is significantly slower than an optimized STRSV. Also, it contains about 320 executable statements,
(versus 160 for the unoptimized version of STRSV) a measure of the complexity of producing such
code.

There are three ways to accelerate SLATRS. Since the standard interface to the BLAS routine
for solving a triangular system does not allow for returning the scale factor, we believe that more
than just Feature 3: Wider internal range, is needed.

The first way is to use Feature 3: Wider internal range along with Feature 4: Extra-
wide variables to guarantee that over/underflow cannot occur for a given number of iterations of
the outermost loop of (lower) triangular solve:

Solve L · x = b ... L is lower triangular
for i = 1 to n

x(i) = [b(i) − (
∑i−1

j=1 L(i, j) · x(j))]/L(i, i)

For example, if the entries of L and b are represented in IEEE single, and no diagonal entry of L
is denormalized, and 80-bit Intel arithmetic is used to implement this algorithm, testing the scaling
is needed only once every 64 values of i. In particular, this could be implemented by calling an
optimized 80-bit GEMV on blocks of size 64, which would get much of the benefit of the optimized
SGEMV. IEEE Double is not so good, since we could only do blocks of 8. Alternatively, we could
use scaling code like that in SLATRS to compute the largest block size we could accommodate.
This requires information about the norms of columns of L. In the case of SLAEIN, where we call
SLATRS many times, the cost of this information is small. In the case of condition estimation, the
cost is larger.

The second way to accelerate SLATRS uses Feature 5: Exception handling, and was ex-
plored in [15]. The IEEE exception flags can be used to hide over/underflow problems as follows:
We first run using the optimized STRSV, and then check the exception flags. Since over/underflow
is rare, this will almost always indicate that the solution is fine. Only in the rare cases that an
exception occurs does one need to recompute more carefully. This is definitely the way to go on a
Pentium. Speedups reported in [15] ranged from 1.4 to 6.5.

The third way to accelerate SLATRS, which could complement the above ways, is to more
cleverly estimate how big a block we can call STRSV on, based on some data about sizes of off-
diagonal entries of the matrix. SLATRS currently does this in a naive way, and we have explored
better alternatives as well.

The complex analog CLATRS is used in the above routines as well as in some other LAPACK
routines like CTREVC, which computes eigenvectors of triangular matrices. Speedups of CTREVC
using exception handling reported in [15] ranged from 1.38 to 1.65. The overall routine CGEEV
for the complex nonsymmetric eigenproblem sped up by 8%, since CTREVC is just part of the
calculation.

2.8 Example 7: Eigenvalues and Eigenvectors of Symmetric Matrices

We discuss the acceleration of methods for computing the eigenvalues and eigenvectors of a sym-
metric matrix. In particular, they apply to the second phase of the algorithm, when the original

18

matrix has been reduced to tridiagonal form. We use combinations of Feature 3: Wider internal
range, Feature 4: Extra-wide variables, and Feature 5: Exception handing.

We begin with the recently released LAPACK code xSYEVR [2], which uses a new algorithm
[18, 17, 42, 43] that is significantly faster than any previous algorithm, running in O(n2) time to find
all the eigenvalues and all the eigenvectors of an n-by-n symmetric tridiagonal matrix. The core of
the new algorithm is in subroutine xLAR1V, which computes the so-called stationary qd transform
of a tridiagonal T in factored form T = LDLT , producing a factored form of T − σI = L+D+LT

+,
where σ > 0 is a shift, D and D+ are diagonal, and L and L+ are unit lower triangular and
bidiagonal (i.e. L and L+ have ones on the diagonal, nonzeros directly below the diagonal, and are
zero elsewhere). The algorithm is

s = −σ
for i=1 to n− 1

D+(i) = D(i) + s
L+(i + 1, i) = L(i + 1, i) ∗D(i)/D+(i)
s = s ∗ L+(i + 1, i) ∗ L(i + 1, i) − σ

end for
D+(n) = D(n) + s

If the final value of s is Not-a-Number, which may occur if σ is larger than the smallest eigenvalue
of T , this is detected (by asking if not(s > 0 or s < 1)) and a slower version of the above loop is run
with branches to avoid creation of ±∞ or NaN. The same idea is used to speed up the computation
of eigenvalues the differential qd transform in LAPACK subroutine xLASQ3. The speedup of the
overall routine for finding all the eigenvalues of T by exploiting arithmetic with NaNs and infinities
this way ranges from 1.28 times faster on a Sun Ultra 30 to 1.8 times faster on an IBM RS-6000/590
[43]. This does not require the full power of Feature 5: Exception handling, just IEEE default
arithmetic [3, 4].

Similarly, ScaLAPACK routine PDLAIECT assumes the availability of arithmetic with ±∞
(like 1/∞ = 0) to remove branches from the inner loop in the computation of eigenvalues, and so
go faster. The simplest version of the inner loop in PDLAIECT is as follows:

Count the number of eigenvalues less than x of the symmetric tridiagonal matrix T with diagonal
entries a(1 : n) and off diagonals b(1 : n− 1) (we assume b(0) = 0).

count = 0
d(0) = 1
for i = 1 to n

d(i) = a(i)− x− b(i− 1)2/d(i − 1)
if d(i) < 0, count = count + 1

In practice d(i) overwrites d(i− 1), and we replace the inner loop by d = a(i)− x− b(i− 1)2/d.
The trouble with this is that if d is small or zero, overflow occurs. The standard fix is to test to
see if d is too small, and explicitly set it to a tiny safe value if it is:

for i = 1 to n
d = a(i)− x− b(i− 1)2/d
if (|d| < too small), d = −too small

19

if d < 0, count = count + 1

A faster way used by PDLAIECT if the user is on an machine implementing IEEE infinity
arithmetic (i.e. most of the time) is to go ahead and compute an infinite d, since the next time
through the loop b(i− 1)2/d will be zero, and the recurrence will continue uneventfully. This also
requires updating count slightly differently, to account for −0s. Speedups reported in [15] range
from 1.18 to 1.47. This also does not require the full power of Feature 5: Exception handling,
just the IEEE defaults [3, 4].

for i = 1 to n
d = a(i)− x− b(i− 1)2/d
count = count + signbit(d)

The above loop requires neither extra precision nor wider range, and is in fact part of ScaLA-
PACK [8].

One can further accelerate this recurrence by reorganizing it to remove the division, which can
cost 6 times or more than the other floating point operations. This loop looks like

for i = 1 to n
p(i) = (a(i) − x) · p(i− 1)− b(i− 1)2 · p(i− 2)
if (p(i) and p(i− 1) have opposite signs), count = count + 1

The relationship between these loops is that d(i) = p(i)/p(i − 1). Again we can remove the
subscript on p(i) if we use two temporaries:

for i = 1 to n step 2
p = (a(i) − x) · p1− b(i− 1)2 · p2
if (p and p1 have opposite signs), count = count + 1
p1 = (a(i + 1)− x) · p− b(i)2 · p1
if (p and p1 have opposite signs) count = count + 1
p2 = p

This loop has no division, and so may be much faster than the first one. Not all machines have
such slow division, so this will be machine dependent. However this loop is much more susceptible
to over/underflow, because p(i) is the determinant of the leading i-by-i submatrix of T − x · I,
and determinants easily over/underflow. For example det(x · eye(n)) = xn in Matlab notation,
and neither x or n has to be very large for overflow to occur. We again have two approaches as
in Section 2.7: First we can use Feature 4: Extra-wide variables which requires Feature 3:
Wider internal range to implement the loop; for example, using 80-bit arithmetic will let us
reduce the frequency of scaling tests in the inner loop to one every 128 iterations with IEEE single
inputs or 16 with IEEE double. Second, we can use Feature 5: Exception handling to decide
when overflow has occurred and (partial) recomputation with scaling is necessary (this may be used
in conjunction with Feature 4: Extra-wide variables to reduce the incidence of exceptions).

There are various ways to accelerate bisection by using Newton’s method or related ideas, but
all involve inner loops similar to the one above.

Since PDLAIECT is not a BLAS routine, there is no way to hide the use of Feature 4: Extra
wide variables or Feature 5: Exception handling.

20

2.9 Example 8: Cheap Error Bounds

A simple and attractive, if not always rigorously justified, way to get error bounds is to do an
entire computation in one precision, say single, and then do it again entirely in a high precision,
say double. For simplicity, suppose the true result of subroutine solve is the scalar x, and call the
single precision scalar answer xS and the double precision scalar answer xD. Then the simple error
bound for the error in xS is simply |xS − xD|. The justification is that if the algorithm is backward
stable, then xS can be expressed as xS = x + κ · εS , where κ is the unknown condition number
and εS is at most single-precision machine epsilon in magnitude. Similarly, xD = x + κ · εD. Then
|xS − xD| = |κ(εS − εD)| ≈ |κεS |, the error in xS . The error in xD is roughly εD/εS times smaller.
There are a number of ways these estimates can be too large or too small, but they are better than
nothing.

When xD cannot be computed entirely in double precision, but perhaps only with some parts
in double (like the internal precision of the BLAS), then the reliability of |xS − xD| as an error
bound decreases, but it still has some value.

This makes it attractive to write subroutine solve for computing x with the precision (S or
D) as an input parameter. This means just one version of solve would have to be written, and
the decision to use single or double precision would be made at run-time. Given the way variables
are declared in languages like Fortran and C, we cannot change their types from single to double
at run-time, but we can hope to change Feature 2: Extra internal precision, i.e. how much
internal precision is used within the BLAS. In other words, we could pass in a variable PREC
which might equal Single or Double, and in turn pass this as a run-time argument to the BLAS.
The alternative, where the internal precision is determined at compile time, would mean that we
would need (at least) two versions of solve, or code within solve that branches based on PREC
and calls different BLAS routines. This would make solve unpleasant to write, read and maintain.

3 Implementation Techniques for Extended Precision

3.1 Introduction

Described in this section are most of the diverse schemes by which hardware, compilers and lan-
guages may support the five arithmetic features listed in Section 2.1. The schemes discussed are just
the ones deemed most likely to support extended precision BLAS. After a general discussion and
history of these techniques, we discuss the implementation used in our reference implementation in
more detail.

Almost all computer architectures and the programming languages available for them support
more than one floating-point format. The two formats supported practically universally are 32-bit =
4-byte single precision and 64-bit = 8-byte double. The CRAY X-MP, ..., J90 family constitutes the
only exception at present and shall be discussed no further. Many architectures and some compilers
support a third floating-point format wider than the first two. The basic kinds of extended (beyond
double) precision formats that have been supported in hardware, firmware or software are named
here in roughly descending order of speed. More details will be presented in Sections 3.2 and 3.3.

Double-extended. This is a conventional floating-point format with one field each of sign bit, ex-
ponent, and significand. IEEE Standard 754 requires this format to have at least 15 exponent
bits and 64 bits of significand. These requirements are met (barely) by a 80-bit = 10-byte

21

register on most Intel processors and their clones. These processors performs floating-point
operations by default in these Double-extended registers even if they get rounded to narrower
widths. This makes operations fast in so far as their execution times vary with operands’
widths mainly in the times taken to move them through memory, not much in times taken
by arithmetic. Except for 11 extra bits of precision, Double-extended arithmetic rounds in
the same careful way as does double, so error-analysis changes solely because of a somewhat
smaller roundoff threshold.

Double-double. Each 16-byte operand is the unevaluated sum of two 8-byte doubles of which
the first consists of the “leading” digits, and the second the “trailing” digits, of the format’s
value. Its exponent range is almost the same as double’s, differing only in some vagueness
about underflow. Rounding is vague too; its precision is roughly twice double’s, and its error-
analysis rather rough (see section 3.3.2). Implementation is in software that may be hardware-
dependent, though it can be made portable to all processors relevant to this document at the
cost of some speed. This issue is important because Double-double is worth using only when it
is noticeably faster than Quadruple, as can often occur if floating-point hardware capabilities
are exploited fully. These implementation techniques can be extended further to tripled- and
quadrupled-double, but with diminishing efficiency except in special cases [11, 45, 47]. These
techniques have also been used to compute dot products (α

∑
i xiyi + βr) with all correct

leading digits, despite all roundoff [35, 9, 33]. We will not consider these very high precision
implementations further here.

Quadruple precision. This is a conventional 128-bit = 16-byte wide floating-point format with
one field each of sign bit, exponent, and significand, though perhaps stored in two 8-byte
words with the second’s exponent field unused. The precision is at least wide enough to
hold exactly the product of two doubles. Nowadays Quadruple precision operations run at
least several times slower than double but use the same careful algorithms for rounding, so
error-analysis changes solely because of a much smaller roundoff threshold.

BigFloats. This is not really an extension of floating-point hardware; instead, arbitrarily high
precision is accomplished by breaking every number into equal-width “big digits” each stored
as an element of an array of integers or integer-valued doubles. This kind of software-simulated
floating-point is built into automated algebra systems like Macsyma [28], Mathematica [51]
and Maple [40], and provided to other programmers by packages like Richard Brent’s MP [10]
and David Bailey’s MPFUN [5]. BigFloats are optimized for very high precision, and run so
much slower than Double-double or Quadruple when delivering comparable precisions that
BigFloats shall not be treated further in this document.

Unfortunately, our three names “Double-extended”, “Quadruple precision” and “Double-double”
need not correspond with the names programming languages use for precisions beyond double. For
instance, “TEMPREAL”, “REAL*10”, “REAL*12” and “REAL*16” are the names used by the
few Fortran compilers that support(ed) Double-extended. On the other hand, “REAL*16” in a
Fortran compiler can mean any one of those three, and “long double” in a C or C++ compiler can
mean any one of those three or just double precision. The names “EXTENDED” and “quadruple”
have also been used by compilers written for hardware with built-in Quadruple precision even if it
is vestigial, existing only as unimplemented op-codes that would trap to software if the compiler

22

did not circumvent trap overheads by invoking the software directly. But by conforming to the
minimum requirements of a standardized language like Fortran 77, many a compiler denies access
to whatever extended precision does exist in the hardware or, worse, uses that extended precision
whimsically to evaluate some floating-point subexpressions while disallowing mention of it, as used
to happen on the Sun III.

Consequently, of the three kinds of extended precision named, only a sub-optimal implementa-
tion of Double-double can be made portable across all compiler and hardware boundaries.

To standardize extended precision BLAS we shall have to cope with diverse formats, imple-
mentations, speeds and linguistic impediments. Section 3.2 will present a little more history of the
support (or lack of it) for extended precisions. Section 3.3 discusses design options for implementing
double-double arithmetic, and finally section 3.3.2 discusses our implementation, which is based on
the Fortran 95 double-double package [6].

3.2 A Little More History of Extended Formats

Among computers still (or once) commercially significant in the world of floating-point computation,
many provide(d) more than nominal support for a third floating-point format wider than the nearly
ubiquitous “REAL*4 (float)” and “REAL*8 (double)” formats.

Format Type Computer Family Bytes Width Sig. Dec. log10(Overflow)
Double-extended Intel x86/87 & Pentium PC 10 19 - 20 4932
IEEE 754 binary & clones by AMD, Cyrix.
64 sig. bits

Motorola 680x0-based Apple 12 19 - 20 4932
Macintosh, NeXT, SunIII;
Intel 80960KB.
HP/Intel IA-64 Itanium; 16 19 - 20 4932
Motorola 88110.

Double-double IBM RS/6000, Power PC, 16 grubby 32 308
2 x 53 sig. bits Apple Power Mac;

HP 8000 & PA RISC 2.0;
(HP/Intel IA64 Itanium)
(IBM s/390 G5) (SGI MIPS)

Quadruple (Hex) IBM S/370, 3090, S/390. 16 31- 33 76
28 hex digits
Quadruple (Binary) DEC VAX “H”, (Compaq Alpha) 16 33 - 34 4931
113 sig. bits IBM S/390 G5 ; 16 33 - 34 4932

(Sun SPARC, HP PA RISC,
HP/Intel IA 64, SGI MIPS)

Table 2: Higher-than-Double Precision Formats Available in Hardware.

The term “Extended” first came into widespread association with “Precision” in late 1967 when
the IBM S/360 mod 85 came out with hardware to support addition, subtraction and multiplication
(not division) of Quadruple precision hexadecimal floating-point operands. This hardware was
IBM’s response to NASA’s expressed but misperceived need for precision beyond double during
orbit calculations. IBM’s hardware competed against Seymour Cray’s CDC 6600 whose “single
precision” word was 60 bits wide with 48 significant bits of precision; it also had three peculiar
“DX” operations to speed up software-implemented “double precision” (actually “single-single”)

23

with almost 96 significant bits, much wider than IBM’s S/360 double precision with 14 hex digits
(about 53-56 significant bits). The mod 85’s “Extended” format persists today, fully supported
(including division) in IBM’s S/390 hardware and compilers for it, stored as two 8-byte double
precision hex floating-point words superficially resembling Double-double; however, the second
word’s sign and exponent are ignored during operations, and its significand may be unnormalized.

In the mid 1970s, to provide a functionality competitive with IBM’s “Extended” for the DEC
VAX a few years after its debut, DEC augmented its floating-point instruction set with the “H”
format, a true Quadruple precision binary format with 113 significant bits of precision in a 16
byte word. DEC’s compilers, plus an excellent mathematical library, supported this format fully
though it ran “hot” (in hardware), “warm” (in microcode) or “cold” (in software) on various VAX
models, and “cold” on the DEC (now Compaq) Alpha. For several years an almost identical de
facto standard Quadruple precision format has existed in several microcomputer architectures that
conform to IEEE Standard 754 for Binary Floating-Point [3]. This format has 15 exponent bits and
113 bits of significand in a 16 byte word, so it qualifies as an IEEE 754 Double-extended format
with more than the minimum (64 bits) of required precision. At this time only the recent (1999)
IBM S/390 G5 processor supports it fully in hardware; it is implemented in software on the HP PA
RISC, Sun SPARC, SGI MIPS and HP/Intel IA 64 (Itanium) processors, and accessible through
their respective manufacturers’ compilers, though not always accompanied by a fully accurate
mathematical library of elementary transcendental functions.

The history of extended precisions is littered with sad stories. One is the dearth of language
support for extended precisions except in compilers produced under the aegis of hardware manu-
facturers, and the variability of that support where it existed; perhaps C99 [12] will remedy this
deficiency. Another arises because so far, no matter whether “hot”, “warm” or “cold”, Quadruple
has always run at least several times slower than double precision. This discourages programmers
from exploiting Quadruple precision; and its consequently low duty cycle and absence from bench-
marks have provided little incentive for hardware manufacturers to speed it up. In fact, sales of
hardware that supports it have scarcely diminished whenever Quadruple precision has been made
cheaper and slower. Meanwhile, it has been shunned for over three decades by expert develop-
ers of portable numerical software libraries like EISPACK [48], LINPACK [20], LAPACK [2] and
ScaLAPACK [8].

A compromise, to offer programmers some benefits of extra precision and thus enhance the
reliability of their numerical software, insinuated a few digits of extra precision into a few places
in the hardware’s architecture where performance would not be degraded too much if at all. This
compromise appeared in the late 1960s in the accumulator register of GE 635 mainframes (subse-
quently taken over by Honeywell), then in the floating-point register file of Pr1me minis, then in
the DEC VAX’s EMOD instruction in the early 1970s, then in the internal registers (inaccessible
to most users) of HP handheld calculators and decimal computers after 1975. These extra digits
were at first intended for use solely in assembly language or microprogramming, so they did not
appear in higher-level languages. This linguistic mindset contributed to more sad stories later.

In 1977 the 8087 floating-point coprocessor for Intel’s 8086/88 processors was being designed
to serve a market bigger by orders of magnitude than the computing industry had served before.
This vast market’s average level of numerical expertise was expected to be lower than before so,
for the sake of enhanced reliability, the 8087 was designed to support three floating-point formats:
4-byte single precision, 8-byte double precision, and 10-byte Double-extended precision with three
more exponent bits and eleven more bits of precision than double. Most important, all the 8087’s

24

registers had this extended width, and all operations were carried out to this width regardless of the
operands’ precisions, much as the original Kernighan-Ritchie C on DEC PDP-11s had evaluated
all floating-point subexpressions in double regardless of declared variables’ precisions. In short,
applications programmers were intended to use the 8087’s Double-extended precision (Intel called
it “TEMPREAL”) for all local variables and intermediate expressions except perhaps large arrays,
since the use of narrower precisions could save appreciable time only while they moved through the
memory system.

By 1981 a proposed IEEE Standard 754 had grown out of the 8087’s design, and its three
formats’ rationale and intent had been adopted at three more companies: Motorola was working on
the 68881 floating-point coprocessor for its 68020, Zilog on the Z8070 for its Z8000; and Apple had
incorporated all three formats into its Standard Apple Numeric Environment (SANE) first for the
Apple III’s Pascal and then for the 680x0-based Macintosh and retrofitted for the Apple II. With
their eyes on that vast mass market, these three companies designed the Double extended format
to be the default for all floating-point operations. However, there was another market, the one
then served by mainframes and minicomputers, to which upscale workstations could be sold with
higher speeds and markups than were contemplated for the mass market of Personal Computers.
Workstation users were expected to recompile many of their mainframe applications, which hardly
ever mentioned Extended. Since they cared about speed to the near exclusion of everything else,
the draft of IEEE 754 left the Double extended format to the implementor’s option. By 1982-3
implementations of IEEE 754 without that option were under way at National Semiconductor,
Weitek, Sun SPARC, MIPS (now SGI), and IBM, whose RS/6000 processor developed in Austin
TX evolved into the Power PC now produced also by Motorola and used in Macs.

By 1985, when IEEE 754 was promulgated as an official standard, two versions of it had
become de facto standards for most new computer hardware. All three of its floating-point formats
were supported by a few numerically superb compilers for SANE on Apple Macintoshes; but most
compiler makers continued to use front ends that lacked names for a third floating-point format,
so they catered to only the minimal version of IEEE 754 with just single and double.

Short-term marketing priorities overruled long-term mathematical considerations. In 1980, for
instance, Microsoft was implementing compilers for the forthcoming IBM PC, which had an Intel
8088 processor and a socket for the 8087. Microsoft wrongly prophesied emptyness for almost all
of those sockets, so its compilers lacked support for Double extended arithmetic which, in software,
would have run somewhat slower than double. Later, when Borland came out with Pascal and C
compilers that supported all three floating-point types, Microsoft followed suit for a decade until,
by the late 1990s, its dominance of the market let it drop support for Double extended from its
compilers run on Windows NT, which was implemented originally on DEC Alphas whose IEEE 754
arithmetic had only single and double.

Apple’s alliance with IBM in the late 1980s, entailed switching Macintoshes from the 680x0 to
IBM’s Power PC. Because it supported only single and double precisions, this choice of processor
scuttled SANE. It need not have happened that way; other fast RISC processors like Intel’s 80960KB
and Motorola’s 88110 could have sustained SANE. But floating-point did not figure in Apple’s
marketing plans.

Currently 10-byte Double-extended is practically ubiquitous in the hardware of Intel x86/87
and Pentium processors and their clones by AMD and Cyrix. The width of this format may
be padded by extra bytes to avoid memory alignment delays and allow for future growth to a
wider significand if and when market conditions demand it; the total padded width is 12 bytes

25

for Motorola 680x0/68881/2 and Intel 80960KB, 16 bytes for Motorola 88110 and HP/Intel IA
64 (Itanium) processors. All these processors can evaluate floating-point operations by default in
Double-extended registers, even if they get rounded to narrower widths; their execution times vary
with operands’ widths mainly in the times taken to move them through memory, not much in
times taken by arithmetic. However, even if some Microsoft compilers use it surreptitiously, they
stopped supporting Double-extended when Windows NT came out. Java does not support it at
all, and no commercially significant Fortran compilers support it. Maybe things will change with
the emergence of C99 and Itanium.

The first and easiest way for BLAS to exploit Double-extended on hardware that has it is
to use it to accumulate scalar products and matrix products of double precision data. There is
ample precedent for extra-precise accumulation; products of single precision matrices used to be
accumulated in double precision routinely until the mid 1960s when doing so became slow on CDC
mainframes and inconvenient on IBM mainframes because standard Fortran semantics had been
changed. The superior quality of results obtained by LAPACK and Matlab for large dimensional
and ill-conditioned problems would distinguish hardware capable of extra-precise accumulation
advantageously from others [30].

Versions of Matlab that ran on old 680x0-based Apple Macintoshes, and old versions of Matlab
running on Wintel PCs, delivered matrix products more accurate thereon than Matlab used to
deliver on upscale Sun SPARCs and SGI MIPS, or delivers now on all computers. Mathematica’s
N[...] operator delivered three more decimal digits’ accuracy on old Macs and NeXTs than on all
other computers. Should ostensibly portable software be allowed to get better results on some
hardware than on others? The answer “Yes” seems obvious to the owners of the better hardware,
but not so clear to software developers who yearn for Java’s promise of identical floating-point
results for everybody everywhere even if it is a pipe-dream. Each variation multiplies the cost of
software testing and validation. On the other hand, “no variation” implies “no change”, which stifles
evolutionary progress leaving no alternative but revolution. Voltaire put the conflict succinctly:
“The Better is the enemy of the Good.” It will not be resolved here.

The tension between knowledgeable purchasers of computing platforms (hardware and operating
systems) on the one hand, and applications software vendors on the other hand, poses dilemmas
for platform vendors whose different product lines offer different floating-point qualities. Here are
some of the vendors who must cope with invidious comparisons and conflicting loyalties within
their own houses:

Vendor Line(s) with Double-extended Line(s) without
Apple Old 680x0-based Macintosh Power Mac, iMac
Compaq Wintel PC DEC Alpha
HP Wintel PC, IA-64 HPUX on PA RISC
IBM Wintel PC Power PC, RS/6000
SGI Wintel PC UNIX on MIPS R-x000
Sun Solaris on Intel-based PC Solaris on SPARC
Microsoft Windows 9x on PC Windows NT on DEC Alpha

Table 3: Conflicting product lines with and without Double-extended.

In Windows NT on a PC the conflict was resolved highhandedly by inhibiting the PC’s Double-
extended to match the DEC Alpha’s arithmetic limitations. Java seems to be attempting the
same for the sake of Sun’s SPARC. Other vendors may have to exercise greater sensitivity to

26

market conditions. The outcomes of these conflicts will not be predicted here except for the wry
observation that, by itself, technical superiority cannot ensure market success despite what R.W.
Emerson may have said about a better mousetrap.

Finally, we mention that G. Henry built a comprehensive suite of scalar extended precision
operations for ASCI Red, which consists of Pentium Pro processors running Linux [26]. It includes
object code in ELF format, and so is callable from C or Fortran on Linux-based Intel-inside work-
stations, and perhaps Solaris X86, though this remains to be determined. A typical routine is
xadd YYY (a,b,c), which computes a = b + c. Each Y indicates the type of a (first Y), b (second
Y) or c (third Y), which can independently be single (”s”, 32 bit), double (”d”, 64 bit), extended
(”x”, 80 bit), or even double-double (”w”, 128 bit) and double-extended–double-extended (”q”,
160 bits) (discussed in the next section). In other words, there are 53 = 125 add functions. Other
operations are subtraction, multiplication, mul-add, mul-subtract, sqrt, assignment (conversion),
and reciprocation. There is also a dot product that takes double precision input vectors and ac-
cumulates the dot product in extended. Finally, there are routines to change the rounding mode
to 64-bits or 80-bits, and to print a number. There are over 700 routines, which were produced
with the help of an automatic generation tool. This shows that an implementation that completely
supports all kinds of mixed precision operations will be very large, and require automation to build
and support.

3.3 More about Double-Double

The 16-byte Double-double format can be implemented in portable software to run on all ma-
chines that conform to IEEE 754 and on quite a few that don’t, and runs about an order of
magnitude slower than double but usually considerably faster than Quadruple. Double-double
and its variations have an extensive history, with implementation ideas going back to the 1960s
[44, 13, 29, 39, 45, 47, 11, 26, 6]. See especially [45] for a history. Our implementation is based on
Bailey’s [6], the main routines of which are shown in the Figures 5 through 7 below. For the routines
with other combinations of inputs and outputs, see http://www.nersc.gov/∼xiaoye/XBLAS/.

The addition, multiplication and division algorithms in figures 5, 6 and 7, require 20, 25 and 32
floating-point operations, respectively.

Double-double can be sped up roughly twofold if advantage is taken of a Fused Multiply-
Accumulate (FMAC) operation on hardware that has it. This operation computes expressions like
X ∗Y +Z , X ∗Y −Z and Z−X ∗Y with just one rounding error at the end instead of two rounding
errors, one after multiplication and another after addition. (Do not confuse the FMAC with the
unfused MAC operation that computes X ∗Y + Z in one instruction but with two rounding errors,
thus saving only time.)

The FMAC appeared first in 1984 on the IBM RS/6000, whose reduced instruction set designed
two decades earlier by Dr. John Cocke had only three floating-point operations: conversions
between single and double precision, and a MAC. This MAC was upgraded to an FMAC when
it was found necessary for a software implementation of division correctly rounded at a tolerable
speed.

Among many other uses, the FMAC accelerates Double-double by computing exactly a product
X ∗ Y of two doubles in just two operations, thus drastically shortening algorithm ddmuld in
figure 6:

P := X ∗ Y + 0 rounded to double;

27

void ddadd(double dda[2], double ddb[2], double ddc[2])
{

/* Compute double-double = double-double + double-double
(ddc = dda + ddb). */

/* dda[0] represents high-order word, dda[1] represents low-order word. */
double bv;
double s1, s2, t1, t2;

/* Add two high-order words. */
s1 = dda[0] + ddb[0];
bv = s1 - dda[0];
s2 = ((ddb[0] - bv) + (dda[0] - (s1 - bv)));

/* Add two low-order words. */
t1 = dda[1] + ddb[1];
bv = t1 - dda[1];
t2 = ((ddb[1] - bv) + (dda[1] - (t1 - bv)));

s2 += t1;

/* Renormalize (s1, s2) to (t1, s2) */
t1 = s1 + s2;
s2 = s2 - (t1 - s1);

t2 += s2;

/* Renormalize (t1, t2) */
ddc[0] = t1 + t2;
ddc[0] = t2 - (ddc[0] - t1);

}

Figure 5: Adding two double-doubles

28

void ddmuld(double dda[2], double db, double ddc[2])
{

/* Compute double-double = double-double * double (ddc = dda * db). */
double a11, a21, b1, b2, c11, c21, c2, con, e, t1, t2;
double split = 2^27 + 1;

/* Split dda[0] and db into two parts with at most 26 bits each,
using the Dekker-Veltkamp method. */

con = dda[0] * split;
a11 = con - dda[0];
a11 = con - a11;
a21 = dda[0] - a11;
con = db * split;
b1 = con - db;
b1 = con - b1;
b2 = db - b1;

/* Compute dda[0] * db using Dekker’s method. */
c11 = dda[0] * db;
c21 = (((a11 * b1 - c11) + a11 * b2) + a21 * b1) + a21 * b2;

c2 = dda[1] * db;

/* Compute (c11, c21) + c2. */
t1 = c11 + c2;
t2 = (c2 - (t1 - c11)) + c21;

/* Renormalize (t1, t2) */
ddc[0] = t1 + t2;
ddc[1] = t2 - (ddc[0] - t1);

}

Figure 6: Multiplying a double and a double-double

29

void dddivd(double dda[2], double db, double ddc[2])
{

/* Compute double-double = double-double / double (ddc = dda / db),
using a long division scheme. */

double b1, b2, con, e, t1, t2, t11, t21, t12, t22;
double split = 2^27 + 1;

/* Compute a DP approximation to the quotient. */
t1 = dda[0] / db;

/* Split t1 and b into two parts with at most 26 bits each,
using the Dekker-Veltkamp method. */

con = t1 * split;
t11 = con - (con - t1);
t21 = t1 - t11;
con = db * split;
b1 = con - (con - db);
b2 = db - b1;

/* Compute t1 * b using Dekker’s method. */
t12 = t1 * db;
t22 = (((t11 * b1 - t12) + t11 * b2) + t21 * b1) + t21 * b2;

/* Compute dda - (t12, t22) using Knuth trick. */
t11 = dda[0] - t12;
e = t11 - dda[0];
t21 = ((-t12 - e) + (dda[0] - (t11 - e))) + dda[1] - t22;

/* Compute high-order word of (t11, t21) and divide by b. */
t2 = (t11 + t21) / db;

/* Renormalize (t1, t2). */
ddc[0] = t1 + t2;
ddc[1] = t2 - (ddc[0] - t1);

}

Figure 7: Dividing a double-double by a double

30

Q := X ∗ Y − P exactly as a double thanks to the FMAC.

Now the product of X and Y equals the sum of doubles P and Q exactly although rounding that
sum to double would yield just P . This kind of unevaluated sum of a leading and a trailing double
is the way every Double-double is represented by a pair of doubles. To compute P and Q without
an FMAC would cost six conventional multiplications plus several additions or subtractions.

The FMAC is built into the hardware of IBM’s RS/6000 and, for compatibility with it, into the
S/390 G5 processor as well as the IBM/Motorola Power PC used in Apple’s Power Macs. The same
goes for HP’s 8000 and PA RISC 2.0, and for the SGI MIPS R-8000. At present C99 [12] is the
only higher-level programming language that offers an explicit invocation fma(x, y, z) = x ∗ y + z
of the FMAC. Language support for the use of FMACs by default on hardware that has it poses
problems partly because of ambiguity (how should “X ∗ Y + A ∗ B” be evaluated?) and partly
because indiscriminate use can, in very rare instances, break programs that would have worked
well with an unfused MAC. Because of these rare instances, Matlab eschews the FMAC. Worse,
the MIPS R-10000 uses the same opcode for its unfused MAC as the R-8000 used for its FMAC,
thus dropping conundrums in the way of language support. The HP/Intel IA 64 Itanium has
a Double-extended FMAC which can serve Double-double and Double-double-extended with the
same algorithms, and perhaps serve software-implemented Quadruple too.

Here are some other double-double implementation efforts.
Keith Briggs released a C++ class library implementing a doubledouble type [11]. It lets users

declare double-double variables and operate on them using standard infix operators via operator
overloading. It supports the usual four arithmetic operations, sqrt, transcendentals, and I/O. In
other words, it essentially makes double-double a first class floating point data type, so that one
could use them internally to the BLAS or externally. It runs on the X86 architecture with Linux
and gcc, X86 with Windows 95 and Microsoft C++, MIPS with IRIX and egcs, and SPARC with
Solaris and egcs.

David Bailey released a Fortran 95 double-double package [6]. It does not introduce a new
data type for double-double variable, but just represent it using a pair of REAL*8 numbers. It
supports the usual arithmetic operations and transcendental functions. It is portable on all the
machines with IEEE floating-point arithmetic. In fact, our double-double implementation and basic
algorithms are very similar to Bailey’s, modified as described in the next section.

Finally, G. Henry’s package mentioned above [26] includes not just double-extended operations,
but double-double and double-extended–double-extended (i.e. 160-bits, with 128 fraction bits).

3.3.1 Why Double-double is an attractive nuisance except for the BLAS

Currently, machines with an FMAC run Double-double a few times faster than correctly rounded
Quadruple implemented in software. This speed advantage turns Double-double into an “attractive
nuisance”, like an unfenced backyard swimming pool. The trouble grows out of the diverse ways
Double-double can be rounded, none of them strictly correct, as will be explained further below.
An outline of the trouble, which only occurs trying to use double-double more widely than inside
the BLAS, goes like this:

Consider a Pascal, Fortran or C Function F (X) written “polymorphically” in four versions,
the first using exclusively small integer constants and REAL*4 (float) variables, the second the
same except for replacement of every REAL*4 (float) by REAL*8 (double), the third the same
but for REAL*10 (Double-extended or TEMPREAL), and the fourth the same but for REAL*16

31

(long double). This program is intended to approximate some ideal real function f(x) that can be
inferred from F (X) by substituting “INFINITE PRECISION” for every “REAL*...” declaration
and attending to a few technical details concerning stopping criteria for iterations. For instance,
the rounding error threshold EPS/2 should be gauged from statements like

T := 3 ;
EPS := ABS(1 + 3 ∗ (1− 4/T)) ;

(only the quotient should be inexact); and convergent iterations that would take infinitely many
repetitions to achieve infinite precision should be assumed to do so instantly. If each of the first
three versions of F (X) matches f(x) within a few units in the last place of the precision declared
for F (X), then we may well expect the same for the fourth version, and this expectation is fully
justified if REAL*16 (long double) compiles to correctly rounded Quadruple precision or even just
Double-extended. But not if it compiles to Double-double; then program F(X) can malfunction
arbitrarily badly.

These malfunctions are not mere theoretical possibilities; they do happen, rarely but not rarely
enough to ignore, on IBM’s and Apple’s Power PCs, whose compilers support Double-double fully
as well as IEEE 754 single and double precisions. Consequently there is some non-negligible risk of
malfunction if a program recompiled for those machines was imported from machines, like IBM’s
S/390 G5, on which “REAL*16” means Quadruple precision, or from machines like old Macs on
which “long double” meant Double-extended. The risk for BLAS is probably negligible, arising
perhaps from none but contrived situations; still, the risk deserves some discussion.

The quantity EPS computed above is the gap between 1.0 and the next bigger floating-point
number in the format to which 4/T was rounded unless this format is Double-double, in which case
the gap is far tinier. When computed in Double-IEEE-754-double, EPS comes out to 0.5106 provided
division and subtraction are rounded with care; but 1.0 + 0.51022 is a Double-double number much
closer to 1.0. More generally, most Double-double precision numbers X are separated from their
neighbors by gaps of the order of X*EPS ; but around double precision numbers the Double-doubles
are much denser, some separated by gaps no bigger than the smallest positive double, 0.51074 for
Double-IEEE-754-double. Consequently a rounding error in Double-double can vastly exceed the
gaps between adjacent numbers. This disparity breaks the logic and validity of some error- analyses
valid for conventional floating-point.

Here is an example. A common way to approximate cosh(x) is to first compute Z = EXP (ABS(X))
(rounded to roughly working precision) and then COSH(X) = (Z+1/Z)∗0.5. Let’s ignore overflow.
Then COSH(X) may well be less accurate than correctly rounded, yet it is provably monotonic
in this sense: COSH(X) > COSH(Y) implies ABS(X) > ABS(Y). This is provable for every
binary floating-point format conforming to IEEE 754/854. But not for Double-double; no matter
how carefully it is implemented, it almost certainly violates that monotonicity relationship for some
smallish arguments X and Y .

Here is another example. Suppose the iteration x → f(x) converges at a tolerable rate in a
monotonically decreasing way to a finite limit L. Then the loop

X := initial guess, certainly too big ;
Y := anything bigger than X ;
WHILE X < Y DO

Y = X ;

32

X = F (Y) ;
END WHILE
L := Y ;

is a reasonable way to compute L as fast as possible about as accurately as the arithmetic allows.
But not in Double-double. If unluckily the limit L is representable exactly in double precision, then
the sequence of iterates X can look like

L + 0.5100, L + 0.5101, L + 0.5102, ..., L + 0.51074

before it stops. That takes far longer than may have been expected. Worse, a loop not so different
from this one is often used to reveal at run-time a conventional arithmetic’s rounding error threshold
EPS/2 by seeking the smallest increment D that increases the computed value of 1+D . For Double-
double such a loop sets D near the underflow threshold instead of the rounding error threshold.
(To get a correct result, substitute “4.0/3.0 rounded to Double-double” for “1” .)

Hazards like these examples are unlikely to afflict the BLAS though eigensystem calculation
may be affected elsewhere, and so may some computations with special structured matrices like
Cauchy matrices.

On all machines that conform to IEEE 754, Double-double can be implemented in a portable
way that would give exactly reproducible results, but this is unlikely to persist for long for two
reasons: First, an implementation optimal for one architecture may well be very suboptimal for
another, especially if the latter has an FMAC the former lacks. Further differences arise if some
machines tolerate testing and branching much better than others that run faster if extra arithmetic
operations are used in place of tests and branches. Different optimized implementations can give
different but roughly equally valid results on different machines.

Secondly, implementing Double-double differently for the BLAS than elsewhere is worth con-
sidering. For example, Double-double’s roundoff threshold EPS/2 is roughly 0.5107 for IEEE 754
double, so one might reasonably expects a difference X − Y of Double-double arguments to be
computed with an error no worse than something like EPS ∗ |X − Y | . Doing so takes noticeably
longer than if instead an error no worse than roughly EPS ∗ (|X|+ |Y |) were tolerable, as is almost
surely the case for matrix multiplication. Thus, Double-double can run sloppier and faster inside
the BLAS than outside them. Of course, if it is sloppy outside too then bad things may well happen
faster, starting with the failure of the short formula above for EPS.

In short, Double-double is an attractive nuisance outside the BLAS but very worthwhile inside
them.

3.3.2 Performance of our double-double implementation

Although the double-double arithmetic operations require many more floating-point operations,
these operations are mostly performed at the register level without incurring much more memory
traffic. The overall speed of an extra precision BLAS routine is not much slower. To confirm
this, we timed several versions of GEMV and GEMM routines on a Sun UltraSPARC, with 333
MHz clock rate and 2 Mbytes secondary data cache. The peak Megaflop rate is 666 Mflops. The
performance results are presented in Figures 8 and 9. The routines we have timed are the following:

1. c dgemv (c dgemm): our GEMV (GEMM) with double precision for everything,

33

2. c dgemv x (c dgemm x): our GEMV (GEMM) with double precision input/output, and
double-double internal precision,

3. f dgemv (f dgemm): the Fortran 77 double precision GEMV (GEMM) from Netlib, and

4. sun dgemv (sun dgemm): the double precision GEMV (GEMM) from the Sun Performance
Library.

Without extra precision, our GEMV and GEMM run at about the same speed as the Fortran
versions. The Sun Performance Library version of GEMM can be much faster than ours and the
Fortran version for large matrices; this is because we do not perform optimizations such as blocking
to improve data locality.

For the extra precision routines, when the matrices are small and all fit in cache, we observed
about a factor of 9 to 10 slowdown. When the matrices are large and do not fit in cache, we
observed only about a factor of 3.6 slowdown, see Figures 8(b) and 9(b).

We also plot Megaflop rates in Figures 8(c) and 9(c). The flop counts for the normal GEMV
and GEMM are n(2n + 3) and n2(2n + 3), and for the extra precision versions are n(37n + 62) and
n2(37n + 62). The extra precision routines achieve a sustained performance of 270 to 300 Mflops
for both GEMV and GEMM, showing excellent data reuse even without any algorithmic blocking.

Indeed, the Megaflop rates for the extended precision codes are so high that it is doubtful
whether further tuning would make a significant impact on their usefulness.

For a standard model of floating-point arithmetic

fl(a� b) = (a� b)(1 + δ) in the absence of over/underflow, (1)

where � ∈ {+,−,×, /}, we can show that the algorithms in Figures 5 through 7 yield |δ| bounded
by 2 · 2−106, 4 · 2−106 and 4 · 2−106, respectively. This is more than adequate to satisfy the error
bounds described in section 6.

We note that there is a more relaxed model of floating-point arithmetic for addition and sub-
traction

fl(a± b) = a(1 + δ1)± b(1 + δ2)

satisfied by machines without guard digits, like old Crays, which can be implemented in double-
double more efficiently than the stricter model 1. In this relaxed model, the double-double addi-
tion (ddadd) algorithm can be considerably simplified. For example, Bailey’s implementation of
addition [6] satisfies this model, with |δ1|, |δ2| bounded by 2−106. His algorithm requires only 11
floating-point operations as opposed to 20 for ours. We also measured the speed of a few BLAS
routines using Bailey’s double-double algorithms. For example, GEMV runs about 35 – 40% faster.
For the sake of speed, BLAS implementors may feel free to use this relaxed model, since it is still
adequate to meet the error bounds described in section 6.

34

0 100 200 300 400 500 600 700 800 900 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
(a) dgemv (row major) [Sun UltraSparc, 333 MHz]

Matrix Size

T
im

e
 (

S
e

c
o

n
d

s
)

c_dgemv
c_dgemv_x
f77_dgemv
sun_dgemv

0 100 200 300 400 500 600 700 800 900 1000
2

3

4

5

6

7

8

9

10

11

12
(b) Time ratio of c_dgemv_x over c_dgemv [Sun UltraSparc, 333 MHz]

Matrix Size

R
a

ti
o

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350
(c) dgemv (row major) [Sun UltraSparc, 333 MHz]

Matrix Size

M
F

L
O

P
S

c_dgemv
c_dgemv_x
f77_dgemv
sun_dgemv

Figure 8: GEMV performance.

35

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140
(a) dgemm (row major, B transposed) [Sun UltraSparc, 333 MHz]

Matrix Size

T
im

e
 (

S
e

c
o

n
d

s
)

c_dgemm
c_dgemm_x
f77_dgemm
sun_dgemm

0 100 200 300 400 500 600 700 800 900 1000
3

4

5

6

7

8

9

10

11

12
(b) Time ratio of c_dgemm_x over c_dgemm [Sun UltraSparc, 333 MHz]

Matrix Size

R
a

ti
o

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

450

500
(c) dgemm (row major, B transposed) [Sun UltraSparc, 333 MHz]

Matrix Size

M
F

L
O

P
S

c_dgemm
c_dgemm_x
f77_dgemm
sun_dgemm

Figure 9: GEMM performance.

36

4 Summary of Design Decisions

The list of examples in Section 2 was meant to illustrate the opportunities of the five arithmetic
features listed in Section 2.1, and the discussion in Section 3 was meant to illustrate their costs. In
this section we weigh the costs and benefits of these features, and present our design decisions. In
particular, our design should satisfy the following goals:

Goal 1: be reasonable to implement,

Goal 2: support some if not all important application examples,

Goal 3: be easy to use,

Goal 4: encourage the writing of portable code, and

Goal 5: accommodate growth as we learn about new algorithms exploiting our arithmetic features.

Here are our decisions.

1. We do not require that the user explicitly declare or use any new extended precision data
types, i.e. we do not use Feature 4: Extra-wide variables. Since these are not supported
in a standard way by every language and compiler, we cannot reasonably mandate them
here. If we made up conventions (like double-double variables occupying a pair of consecutive
double precision words in Fortran 77) then users would expect us to propose subroutines for
all the other operations they might want using these variables (binary arithmetic operations,
comparisons, binary-decimal conversion, etc.), which is definitely beyond the scope of this
committee (violating Goal 1). Furthermore, in languages like Fortran 77 without “data
hiding” mechanisms, users might have to modify their data structures significantly and replace
all infix operators like + and × with subroutine calls (violating Goal 3). Thus the only
extended precision that we mandate is hidden inside the BLAS, and so can be implemented
in any convenient machine dependent way.

2. The above decision mostly satisfies Goal 2, since many of the examples in Section 2 can be
implemented without Feature 4. Nonetheless, those examples requiring Feature 4 could be
supported when the working precision is single and the extended precision is double. This
would violates the long-held goal in libraries like LAPACK to be able to run essentially
the same code in all available precisions, creating all versions automatically from one single
precision template. But it is worth it for the benefits in single.

3. Since we cannot predict all the future applications of extended or mixed precision, nor can
we predict what new class libraries or modules will become available to support new data
types (e.g. see Section 3.3), it is important to accommodate growth (Goal 5). We do this by
making our design as orthogonal as possible to the rest of the BLAS Standard, showing how
to take any BLAS routine (including future ones with, say, quadruple precision inputs and
outputs), determine whether extra precision is worth using or not, and define the extended
precision version if it is.

In particular, we believe that extra precision is not worth using unless (1) there is the pos-
sibility of cancellation between non-input quantities in the algorithm, and (2) one is not

37

applying orthogonal transformations. The first condition eliminates scaling a matrix by a
constant, computing norms of matrices and vectors, and adding two arrays, since in all these
cases the result is already good to high relative accuracy without extra internal precision.
In fact, adding two numbers to higher precision and then rounding their sum to the lower
output precision can yield a very slightly less accurate answer than doing everything in the
output precision. The second condition reflects the fact that the orthogonal transformations
have already been rounded to working precision, and this does about as much damage to the
accuracy as roundoff in their subsequent application in working precision to another vector
or matrix, so it is not worth making this second step more accurate.

4. Since the number of possible routines with all combinations of mixed precision inputs is very
large, and includes combinations unlikely to be used in practice (like multiplying a single-
precision-real matrix by a double-precision-complex matrix) we specify a small subset of
routines that seem to cover most foreseeable needs. In particular, we allow only certain com-
binations of single real/double real, of single complex/double complex, of single real/single
complex, and of double real/double complex. Furthermore, we limit all scalars and output
variables to be the “higher” of the two precisions. For example, for matrix-matrix multiplica-
tion C = α ·A ·B + β ·C, the following 12 mixed precisions and types are allowed in addition
to the 4 unmixed precision versions (where all arguments are S = single precision real, D =
double precision real, C = single precision complex, or Z = double precision complex):

α A B β C

D S S D D
D S D D D
D D S D D
Z C C Z Z
Z C Z Z Z
Z Z C Z Z
C S S C C
C S C C C
C C S C C
Z D D Z Z
Z D Z Z Z
Z Z D Z Z

In other words only 12 out of the possible 45 − 4 = 1020 mixed precision combinations are
supported. This satisfies Goals 1 and 2.

5. From Example 8 in Section 2.9, we see that we want to be able to specify the internal precision
at runtime; we do this with the variable PREC. This satisfies Goal 3.

6. PREC could potentially take on a great many values, whose meaning varied from machine
to machine (see Section 3.3). To achieve Goals 1 and 4, we need to choose a parsimonious
subset that will be available on all machines: Single (S), Double (D), Indigenous (I) and
Extra (E). If an implementor wants to implement other ones (like tripled-double) or indeed
if PREC=X (Extended) is supported because it is identical to PREC=I on an Intel machine,

38

that is allowed. Furthermore, if it is easier for the implementor to use more precision than
the user requested, that is also allowed.

Therefore, provided the inputs are all single precision (real or complex), the only values of
PREC that must be supported are S, D, I and E. On any particular machine, this would
require at most two or three actual implementations, since either D=I (non-Intel IEEE ma-
chines), S=I (some Crays), and/or wider than requested precision may be used (so that S,
D and I can all be implemented using I on Intel machines). Our reference implementation
provides 3 versions: a true single precision version when PREC = S, a true double precision
version when PREC = D or I, and a double-double version when PREC = E.

When the inputs are all double precision (real or complex), the only values of PREC that must
be supported are D, I and E. Again, on any particular machine, at most two implementations
are needed. On some Crays, I=S is shorter than D (this could be determined safely at run-
time via environmental enquiries), so the implementor would use D in place of I on Crays.
On non-Intel IEEE machines D=I. On Intel machines, D can be implemented using I. Our
reference implementation provides 2 versions: a true double precision version when PREC =
S, D or I, and a double-double version when PREC = E.

So the only really new implementation is PREC=E, which could either be implemented using
double-double (as in our reference implementation) or native quadruple (if it exists).

7. The possible interpretations of PREC just discussed make it imperative that there be environ-
mental enquiries so that the user can find out the actual machine epsilon (or over/underflow
thresholds) of any requested internal precision, so that he or she can do error analysis, pick
stopping criteria for iterations (as in Section 2.2), determine what values of PREC are legal,
etc. We mimic the calling sequence of the LAPACK routine xLAMCH, but supply only that
information needed to evaluate desired error bounds for computed quantities. The details
of the environmental enquiry routine and the meanings of its parameters are described in
section 6. This satisfies Goal 4.

5 Code Generation with M4 Macro Processor

In the existing BLAS, there are usually 4 routines associated with each operation. All input,
output, and internal variables are single or double precision and real or complex. But under the
new extended and mixed precision rules (see [1, Chapter 4]), the input, output and internal variables
may have different precisions and types. Therefore, the combination of all these types results in
many more routines associated with each operation. For example, DOT will have 32 routines
altogether:

• 4 “standard” versions without mixed or extended precision

• 12 versions with mixed but no extended precision

• 4 versions with extended precision but no mixed precision, and

• 12 versions with both extended and mixed precision.

39

The first 16 routines in the above list, those without extended precision, have no PREC argument,
whereas the last 16 do. In addition, the 16 versions with PREC argument support up to three
internal precisions that can be chosen at runtime. Since there are 32 very similar routines to
produce and maintain, we have automated the code generation as much as possible. We use the
M4 [38] macro processor to facilitate this task. We note that although the BLAS operations differ
from routine to routine, they all use the same basic arithmetic operations. All these arithmetic
operations need only be coded once, and reused by the high level routines. The following subsections
describe the two strategies to design the macro code.

5.1 Basic operations

The idea is to define a macro for each fundamental arithmetic operation. The macro’s argument list
contains the variables, accompanied by their types and precisions. For example, for the operation
c← a + b, we define the following macro:

ADD(c, c type, a, a type, b, b type)

where, x type can be one of:

real-single
real-double
real-extra
complex-single
complex-double
complex-extra

Inside the macro body, we use an “if-test” on c type, a type and b type, to generate the appropri-
ate code segment for “+”. This is similar to operator overloading in C++; but we do it manually.
All these if-tests are evaluated at macro-evaluation time, and do not appear in the executable code.
Indeed, our goal was to produce efficient C code, which means minimizing branches in inner loops.

Other macros include SUB, MUL, DIV, DECLARE (variable declaration), ASSIGN, etc. Since these
macros are shared among all the BLAS routines, we put them in a common header file, named
cblas.m4.h, which has about 1100 lines of code.

A natural alternative to this macro approach would appear to be operator overloading. This
would appear to simplify our job by not requiring us to pass in the type of each variable, because
the compiler can figure it out. However, we note that the conventional operator overloading where
the implementation of each binary operation depends only on the argument types and not the result
type is not enough. For example, it cannot correctly choose between Extra = Double × Double
and Double = Double ×Double, because it depends on the result type. An alternative would be
to promote one argument to the output type, but this could be unnecessarily slow if implemented
poorly (e.g. Extra = Extra × Double is significantly more expensive than Extra = Double ×
Double.) Therefore, all these cases would have to be coded individually, and the logic would as
complex as what we do now.

40

5.2 BLAS Functions

Each BLAS routine also has its own macro file, such as dot.m4, to generate the specific functions.
All the macro files are located in the m4/ subdirectory. Each macro file is structured in three levels.
We take dot.m4 as an example:

• The top level generates the 32 subroutines with the correct names, type statements, and
switch statements based on PREC.

• The middle level is the actual dot product algorithm. It is written exactly once in such a
way that lets it support all combination of types and precisions. It is about as long and
complicated as a straightforward C implementation, with the difference that statements like
prod = x[i] ∗ y[i] are converted into the M4 macro calls.

• The bottom level consists of calls to the macros that perform the fundamental operations.

For example, the inner loop of the M4 macro for the dot product is simply as follows (the M4
parameters $2, $3, and $4 are types):

for (i = 0; i < n; ++i) {
GET_VECTOR_ELEMENT(x_ii, x_i, ix, $2)

/* put ix-th element of vector x into x_ii */
GET_VECTOR_ELEMENT(y_ii, y_i, iy, $3)

/* put iy-th element of vector y into y_ii */
MUL(prod, $4, x_ii, $2, y_ii, $3) /* prod = x[i]*y[i] */
ADD(sum, $4, sum, $4, prod, $4) /* sum = sum+prod */
ix += incx;
iy += incy;

} /* endfor */

The motivation for this macro-based approach is to simplify software engineering. For example,
the file dot.m4 of M4 macros for the dot product is 401 lines long (245 non-comment lines) but
expands into 11145 lines in 32 C subroutines implementing different versions of DOT. Similarly the
macros for TRSV expand from 732 lines (454 non-comment lines) to 37099 lines in 32 C subroutines.
(This does not count the shared M4 macros in the file cblas.m4.h.)

6 Testing

The goal of the testing code is to validate the underlying implementation. The challenge is twofold:
First, we must thoroughly test routines claiming to use extra precision internally, where the test
code is not allowed to declare any extra precision variables or use any other extra precision facilities
not available to the code being tested. This requires great care in generating test data. Second,
we must use M4 to automatically generate the many versions of test code needed for the many
versions of the code being tested. For each BLAS routine, we perform the following steps in the
test code:

1. Generate input scalars, vectors and arrays, according to the routine’s specification, so that
the result exposes the internal precision actually used.

41

2. Call the BLAS routine.

3. For each output, compute a “test ratio” of the computed error to the theoretical error bound,
that is, |Computed value−“True value”|

ErrorBound .

In Step 1, we use a nested loop structure to loop over all the input parameters and vary all
possible values for each parameter, to generate a large number of test cases. For example, for the
dot product over 11,000 test cases were generated as described below.

By design, the test ratios computed in Step 3 should be bounded by 1. A large ratio indicates
that the computed result is either completely wrong, or not as accurate as claimed in the spec-
ification. Indeed, our challenge was to construct our test examples so that the test ratio closely
estimated (and certainly bounded) the ratio εint actual/εint claimed between the actual internal pre-
cision used in the BLAS εint actual and the claimed internal precision εint claimed that should have
been used.

There are two different kinds of test cases that we have to generate. The first kind is for routines
that are like dot products. In addition to dot products themselves, this includes matrix-vector
products, matrix-matrix products, axpbys, and other routines where each solution component is
mathematically a kind of dot product. For dot products, the classical error bound provides our test
ratio, and is used in section 4.3.3 of the Standard [1] to specify the required accuracy. Section 6.2
describes how we generate dot products of real data, section 6.3 describes the complications that
arise when the matrix is symmetric or banded, and section 6.4 describes how complex and mixed
precision cases are tested.

The second kind of test case is for the solution of triangular systems of equations. Here the
classical error bound for the solution of triangular systems, which is part of the specification in
section 4.3.3 of the Standard [1], does not lend itself to straightforwardly computing a test ratio as
described above. Instead, we must test indirectly by testing each solution component of a triangular
system as a dot product. This is described in more detail in section 6.5.

6.1 Environmental Enquiries

The machine dependent interpretations of PREC require us to have an environmental enquiry
function to describe the error bounds we expect the BLAS to satisfy. The BLAS Standard [1]
provides one such a function FPINFO in Sections 1.6 and 2.7, which is entirely analogous to the
LAPACK routine xLAMCH [2]. However, this function only provided information about single
precision (SLAMCH) and double precision arithmetic (DLAMCH), not indigenous or extra preci-
sion. Indeed, it may very well not be possible to return the overflow and underflow thresholds for
indigenous arithmetic in any floating point variable that the user is permitted to declare! To avoid
this problem, section 4.3.3 of the BLAS Standard describes a function FPINFO X(CMACH,PREC)
that returns only integer information (like maximum and minimum exponents) describing arith-
metic of precision PREC. Here is a table of values that input argument CMACH can have, and
the result returned by FPINFO X.

42

CMACH Integer value returned by FPINFO X
BASE base of the machine
T number of “correct” (BASE) digits in the floating point mantissa
RND 1 when “proper rounding” occurs in addition,

0 otherwise
IEEE 1 when rounding in addition occurs in “IEEE style”

0 otherwise
EMIN minimum exponent before (gradual) underflow
EMAX maximum exponent before overflow

Based on these integers, we may derive the following real values, whose interpretation we explain
below. Note that T is chosen to make the formula for EPS below give the right value; if rounding
is not perfect, as in any efficient implementation of double-double, then T will be somewhat less
than the number of digits used to represent double-double numbers.

Real parameter Description
EPS machine epsilon

= .5 · BASE1−T if RND = 1
= BASE1−T if RND = 0

UN underflow threshold
= BASEEMIN

OV overflow threshold
= BASEEMAX+1 · (1− EPS)

For PREC = S or D=I on an IEEE machine, there is no difference between these parameters
and the like-named ones returned by xLAMCH; for completeness we include their values in a table
below. And for PREC = I meaning double-extended on an Intel machine, there is also no ambiguity.

But for PREC = E, we must be more careful in their interpretation, because double-double
implementations, including our reference implementation, are not implemented as accurately as
IEEE arithmetic in hardware. For example, EPS may well be larger than BASE−D, where D is the
actual number of (BASE) digits used to store numbers. Also, part of a double-double number may
underflow without the other part underflowing. Finally, OV may be very slightly smaller than the
actual overflow threshold because 1-EPS is slightly smaller than the largest floating point number
less than 1.

Because of these reasonable variations in the way double-double can be implemented, the Stan-
dard itself makes no requirements about how accurate an individual floating point operation must
be. Instead, it only requires that certain error bounds described below for overall BLAS operations
should be proportional to EPS in the absence of over/underflow. These error bounds of course
depend both on the error bounds of individual floating point operations and on the algorithms
used for the BLAS, but not specifying bounds for individual floating point operations gives imple-
mentors more freedom to optimize. In this section, we will be quite specific about the accuracy of
our reference implementation.

So for real floating arithmetic, the following formulas are what we need to know about the
arithmetic done internally to our reference implementation of the BLAS in the absence of overflow
(i.e. assuming neither the inputs a and b nor the output exceed OV). For real addition and

43

subtraction,
fl(a± b) = [a(1 + δa)]± [b(1 + δb)] + η (2)

where |δa| ≤ EPS, |δb| ≤ EPS, and |η| ≤UN. For real multiplication and division (represented by
�)

fl(a� b) = (a� b)(1 + δ) + η (3)

where δa ≤ EPS and |η| ≤UN. In other words, δa, δb and δ are the roundoff errors, and η is the
underflow error, if it occurs. (In fact addition and subtraction for our reference implementation
satisfy bound (3), but (2) which is cheaper to satisfy, would have been enough).

Here is a table of values returned by FPINFO X for our reference implementation, and of the
values of EPS, OV, and UN.

CMACH PREC = S PREC = D or I PREC = E
BASE 2 2 2
T 24 53 105
RND 1 1 0
IEEE 1 1 0
EMIN −126 −1022 −1022
EMAX 127 1023 1023
EPS 2−24 ≈ 5 · 10−8 2−53 ≈ 10−16 2−104 ≈ 5 · 10−32

UN 2−126 ≈ 10−38 2−1022 ≈ 10−308 2−1022 ≈ 10−308

OV 2128(1− 2−24) ≈ 1038 21024(1− 2−53) ≈ 10308 21024(1− 2−104) ≈ 10308

Now consider complex arithmetic. The algorithms for complex addition and multiplication are
straightfoward (for multiplication we do 4 real multiplications and 2 real additions/subtractions)
(see also [14]). Assuming a and b are complex numbers, with real operations satisfying bounds (2)
and (3) above, we get

fl(a± b) = [a(1 + δa)]± [b(1 + δb)] + η (4)

with δa, δb and η complex numbers satisfying |δa| ≤
√

2·EPS, |δb| ≤
√

2·EPS and |η| ≤ √2·UN, and

fl(a× b) = (a× b)(1 + δ) + η (5)

with δ and η complex numbers satisfying |δ| ≤ 2
√

2·EPS and |η| ≤ 3
√

2·UN.
Complex division is more complicated. The simplest possible algorithm

q = qr + iqi =
ar + iai

br + ibi
=

ar · br + ai · bi

b2
r + b2

i

+ i · −ar · bi + ai · br

b2
r + b2

i

(6)

overflows and underflows unnecessarily often, for example when a = b (so q = 1) and both have
magnitudes greater than the square root of the overflow threshold. A commonly used and reasonable
algorithm is due to Smith [34, pp. 195]:

if |br| > |bi| then qr + iqi =
ar + ai · bi

br

br + bi · bi
br

+ i · ai − ar · bi
br

br + bi · bi
br

else qr + iqi =
ai + ar · br

bi

bi + br · br
bi

+ i · −ar + ai · br
bi

bi + br · br
bi

. (7)

44

But it can suffer from intermediate underflow, so only when the numerator and denominator are
large enough in magnitude does Smith’s algorithm satisfy an error bound of the form (3) [14].

Since complex division occurs rarely in the BLAS (n times, versus O(n2) for multiplication and
division in TRSV, although the ratio could be closer to one for TBSV) we have chosen to have a
yet more careful implementation in our reference implementation, that scales the numerator and
denominator if they are two small or too large, in order to satisfy a bound like (3):

fl(a/b) = (a/b)(1 + δ) + η (8)

where |δ| ≤ (6 + 4
√

2)·EPS and |η| ≤ √2·UN. Our scaled version of Smith’s algorithm (7) appears
in Appendix B.

We repeat that since the Standard states no requirements about error bounds in the presence
of over/underflow, such careful implementations of arithmetic, especially complex division, are not
required. However, since they do not slow down most BLAS and do make the error bounds much
simpler to state, we strongly recommend them.

6.2 Testing DOT

The DOT function computes:

r ← β · rin + α ·
n∑

i=1

xi · yi (9)

By careful error analysis (using bounds (2) and (3) for real data and bounds (4) and (5) for complex
data) we can derive the following error bound in the absence of overflow (see Appendix A):

|rcomp − racc| ≤ (n + 2) · (εint + εacc) · S + U + εout · |racc| (10)

where

rcomp = r computed by the routine being tested, with the accumulation done in internal
precision εint, and then rounding to the output precision εout

racc = the computed result using precision εacc

εint = internal precision claimed by the routine being tested
υint = underflow threshold in the claimed internal precision
εacc = our most accurate precision (106 bits) to compute test value r
υacc = underflow threshold in our most accurate precision
εout = output precision
υout = underflow threshold in output precision
S = |α| ·∑n

i=1 |xi · yi|+ |β · rin|
U = max(2|α| · n + 3,

∑n
i=1 |yi|+ 2n + 1,

∑n
i=1 |xi|+ 2n + 1) · (υint + υacc) + υout

The εint, εacc and εout terms may be derived from FPINFO X as described in the last section.
With real arithmetic they correspond to EPS for appropriate values of PREC. With complex
arithmetic εint and εacc should be multiplied by 2

√
2 and U should be multiplied by 3

√
2 as required

by bounds (4) and (5).
The U term is to accommodate all possible underflows at various places; in the absence of

underflow it is zero. It takes into account the three possible ways of inserting parentheses to

45

multiply α with xi and yi. The υint, υacc and υout terms may be derived from FPINFO X as
described in the last section. With real arithmetic they correspond to UN for appropriate values
of PREC. With complex arithmetic υint and υacc should be multiplied by 3

√
2 as required by

bounds (4) and (5).
The returned “test ratio” is the ratio of the left side over the right side of inequality (10). That

is,

ratio =
|rcomp − racc|

(n + 2) · (εint + εacc) · S + U + εout · |racc| (11)

This ratio should be at most 1, and often is rather less than 1, because in the error bound n is
pessimistic and

√
n is more typical if rounding is equally likely to be up or down.

In order to estimate whether the implemented internal precision is at least as high as claimed
by the routine, it is not sufficient to generate random inputs. Because for random inputs, the last
term in the error bound (10) will very likely dominate the error bound, and wipe out the first
term. Therefore our strategy is to make |r| (hence |racc|) much smaller than S, so that εint term
dominates the error bound. In our test generator, we choose α, β, r, x and y judiciously so as to
cancel as many bits as possible when evaluating r.

If the routine being tested claims to use internal precision εint claimed with underflow threshold
υint claimed, then the denominator of our test ratio will be the right-hand side of error bound (10)
with εint = εint claimed and υint = υint claimed. The actual error is bounded by the same formula
with εint = εint actual and υint = υint actual. Presuming that over many tests, the actual error
occasionally approaches its bound, then our test ratio will be as large as

(n + 2) · (εint actual + εacc) · S + Uactual + εout · |racc|
(n + 2) · (εint claimed + εacc) · S + Uclaimed + εout · |racc| (12)

Since εacc ≤ min(εint actual, εint claimed), the U terms are typically much smaller than the other
terms, and since racc is also very small by our choice of data (Section 6.2.1), the above ratio is
roughly

εint actual

εint claimed
(13)

which we compare to 1. Therefore, a large ratio gives us a sense of the actual precision, assuming
underflow does not dominate.

The error bound in section 4.3.3 of the Standard is derived from bound (10) by assuming
underflow does not occur (letting us set U = 0), taking εint = 2

√
2EPS (where EPS corresponds

to internal precision PREC), which corresponds to the bounds for complex arithmetic, and taking
εacc = 0, i.e. ignoring the error in our test generation software. Our testing software can only
confirm the slightly weaker bound (10). Thus, an implementation conforming to the Standard will
pass our tests, and an implementation not conforming to the Standard will almost certainly be
detected.

6.2.1 Generating input scalars and vectors

In the test code, we must generate three scalars α, β, r, (r is overwritten by the inner product on
output) and two vectors x and y. To make the inner product small in magnitude, we designed the
following algorithm to generate these quantities. (Here, we assume that the inputs and output are
in single precision, and internal precision is double-double. The other situations are simpler than
this.)

46

1. Choose n, random α, β and xi, i = 1 . . . n.

2. Choose the leading yi, i = 1 . . . n − k + 1, to add bits into the prefix sum, α ·∑n−k+1
i=1 xi · yi,

such that the prefix sum contains at least 106 bits.

y1 = random()
s = α · x1 · y1

do j = 2, n − k + 1
s = s · 2−30 /* shift right 30 bits */
yj = s

α·xj

enddo

3. Choose the remaining yi, i = n− k + 2 . . . n and r, to cancel as many bits as possible.

do j = n− k + 2, n
s = α ·∑j−1

i=1 xi · yi /* very accurately */ (*)
yj = − s

α·xj
/* s + α · xj · yj cancels the leading 24 bits of s */

enddo
s = α ·∑n

i=1 xi · yi /* very accurately */
r = − s

β /* s + βr cancels the leading 24 bits of s */

The pseudorandom numbers generated are uniformly distributed in (0, 1).
In summary, the first (n − k + 1) yi’s are chosen to add bits into the prefix sum, and the last

(k − 1) yi’s, together with r, are chosen to cancel bits in the final sum.
How big should k be, i.e., how many cancellations do we need? It depends on the relative sizes

of εout and εacc. Basically,

k =
⌈
log εacc

log εout

⌉
(14)

which is as large as d106/24e = 5 for single precision output and double-double accurate precision.
This means that we cannot test dot products so simply with n < 6.

For smaller n, we do not have sufficient freedom to add and cancel all 106 bits. Instead, we use
some algebraic identities to make the inner product small. For example,

1. n = 1
Choose α = β at random, a ∈ [1/2, 1) at random with only 12 leading bits nonzero, x1 =
a+εout exactly, y1 = a−εout exactly, r = −a2 exactly, so that the final result equals −α ·ε2

out.

2. n = 2
Choose α = β at random, r = x1, and y1 = −1, to make α · x1 · y1 + β · r = 0 exactly. Choose
y2 such that the final result α · x2 · y2 is much smaller than β · r in magnitude.

3. n = 3
Choose r = 0. Choose y1 = −x3, y3 = x1 to make x1 · y1 + x3 · y3 = 0 exactly. Choose y2 such
that the final result α · x2 · y2 is much smaller than α · x1 · y1 in magnitude.

4. n = 4
Choose r = 0. Choose y1 = −x4, y3 = 0, y4 = x1 to make x1 · y1 + x3 · y3 + x4 · y4 = 0 exactly.
Choose y2 such that the final result α · x2 · y2 is much smaller than α · x1 · y1 in magnitude.

47

5. n = 5
Choose r = 0. Choose y1 = −x5, y2 = −x4, y4 = x2, y5 = x1 to make x1 ·y1 +x2 ·y2 +x4 ·y4 +
x5 · y5 = 0 exactly. Choose y3 such that |x3 · y3| is much smaller than max(|x1 · y1|, |x2 · y2|).

In all the cases above, we have at least 2 summands available in the inner product (9). According
to our design strategy, we can cancel from 24 to 106 leading bits in the final sum. That is,
10−32 ≤ |racc| ≤ 10−8.

For some special inputs, however, where there is at most 1 term in the inner product, |racc|
cannot be made very small, and is O(1). These include:

• n = 0

• α = 0

• α 6= 0, β = 0, and n ≤ 1

For these cases, any internal precision higher than the output precision could not be revealed by
our tests, and indeed any higher internal precision cannot change the answer by more than one ulp
(making the answer slightly less accurate!).

6.2.2 Obtaining an accurate racc

One possibility is to use an arbitrary precision package, such as MPFUN, but our goal is to make
this test code self contained, and use no extra precision facilities not available to the code being
tested. Since most of our routines can be reduced to a series of dot products, testing can be
based on DOT. We only need a trusted dot routine. Currently, we are using our own dot routine
with double-double internal precision to compute racc, which is accurate to 106 bits. That is,
εacc = 2−106, and υacc = 2−968. This implies that any internal precision higher than double-double
cannot be detected, and may result in a tiny test ratio. A very tiny test ratio (such as zero) may
also occur if the result happens to be computed exactly.

The careful reader may wonder how we can trust test code that uses our own accurate dot
product to test itself, as well as all other BLAS. Some test cases are generated where racc is known
exactly by a mathematical formula, because there is exact term-by-term cancellation, and that
we do not depend on our trusted dot product being correct. Indeed, our own trusted accurate
dot product had to pass these other tests. These are precisely the cases when 1 ≤ n ≤ 5 in
see Section 6.2.1.

6.3 Testing SPMV and GBMV

The SPMV and GBMV (matrix vector product, and many other Level 2 BLAS routines) compute:

y ← β · y + α ·A · x (15)

where, A is a symmetric or band matrix of dimension n× n.
Testing it is no more difficult than testing DOT, because each component of the output vector

y is a dot product of the corresponding row of A with vector x, and satisfies the error bound (10).
So we can iterate over the n rows, generate each row of A using almost the same test generator as
DOT, and compute a test ratio for each component of the output y.

48

However, some modifications are needed in the test generator. Consider the case of symmetric
A. For the first row of A, we can use exactly the same algorithm discussed in Section 6.2.1. For
the second row, by symmetry, the (2,1) entry should equal the (1,2) entry, so we only have n − 1
free entries to choose. Furthermore, the x vector is fixed. For the third row of A, we only have
n− 2 free entries to choose, and so on. To accommodate this need, our test generator is modified
as follows. The inputs are those free parameters chosen from a prior call to the generator. The
outputs are the free parameters chosen from this call. The generator first evaluates the partial sum
using the fixed input parameters, and computes the number of bits B available in the partial sum.
If B < 106, we will add a few more terms into the partial sum such that B ≥ 106. Afterwards, we
will generate the remaining free parameters to cancel bits in the running sum. The way to add and
cancel bits is the same as what we described in Section 6.2.1.

This approach can be generalized to most other Level 2 and Level 3 BLAS, except for triangular
solve (see Section 6.5) and Hermitian matrix matrix product (see Section 6.4.3).

6.4 Testing the Complex and Mixed Precision Routines

In principle, the testing of the complex routines is no harder than that of the real routines, and
all of our testing algorithms described in the preceding sections can be used in the complex cases.
However, it is worth noting some subtle differences from the real cases, and the techniques we have
used to reuse the existing test generators of the real cases. Using these techniques greatly reduces
the amount of test software, particularly for those routines with mixed real and complex types and
precisions.

6.4.1 Testing DOT

Our error bound (10) derived in Appendix A applies to real or complex arithmetic DOT function.
The difference between the two is that for complex data, the part of the error bound proportional
to εint + εacc is larger by a factor 2

√
2, and the part of the error bound U coming from underflow

is larger by a factor 3
√

2. Using the same error analysis, we arrive at the following error bound for
the complex DOT function. The detailed derivation is omitted.

|rcomp − racc| ≤ 2
√

2 · (n + 2) · (εint + εacc) · S + 3
√

2 · U + εout · |racc| (16)

See Section 6.2 for the notation. The most noticeable differences are the constant factors associated
with each term: 2

√
2 and 3

√
2. This new bound is used in computing the test ratio (see Equa-

tion (11)).
Second, since the algorithms for the test generator contain complex logic to make decisions based

on precisions and types (see Section 6.2.1), we can not easily macroize them using M4. Instead,
we have to code them manually. On the other hand, we do not want to write 16 versions of the
generator for each combination of the input types and precisions, because that will be too much
work and more importantly, much too error-prone. Our compromise is as follows. We manually
write only 4 generators for the un-mixed routines: single (C), double (D), single complex (C) and
double complex (Z). For all the other routines, we only build wrappers around these 4 generators.
There are two cases.

1. For the mixed precision routines with the same data type (real or complex), we use the
generator corresponding to the lowest input precision. For example, to test c zdot c c(),

49

we use single complex (C) test generator. For the higher precision variables, we pad zeros in
the trailing part. As long as the vector length is long enough (n ≥ 6), we will get significant
cancellation, see Section 6.2.1.

2. For the mixed real and complex routines, we first use the real test generators (single (S)
or double (D)) to generate the real inputs. Then, we apply simple complex scalings to the
complex inputs and outputs. For example,

type scaling
α, β, r x y generator α x y β r

C S S S 1 + i 1 1 1− i i
C S C S 1 + i 1 1 + i 1 + i 1 + i

Z D D D 1 + i 1 1 1− i i
Z D Z D 1 + i 1 1 + i 1 + i 1 + i

As long as the complex scalars are of the form 2j , i · 2k, or 2j + i · 2k with integers j and k,
we do not introduce any roundoff errors in this scaling.

6.4.2 Testing WAXPBY

WAXPBY (scaled vector accumulation) computes:

w ← α · x + β · y (17)

where, x, y and w are vectors of length n. In principle, we can treat each component as a DOT
function of length 2, and use the DOT testing code. However, since the length n = 2 is small, DOT
generators can only produce good cancellations for the routines with un-mixed types: S, D, C, and
Z. For the routines with mixed precisions, such as c dwaxpby s s() (α, β,w double, x, y single), if
we were to use the DOT test generator, the result only cancels the leading 24 bits. We can achieve
more cancellations using another algebraic identity. Here is how we do it.

Consider the identity a6 − 1 = (a2 − 1) (a4 + a2 + 1), where a is a random integer in (0, 212).
Let α = a4 · 2−48, β = (a4 + a2 + 1) · 2−48, xi = a2 · 2−24, and yi = −(a2 − 1) · 2−24. By design,
a · 2−12 is a real random number in (0, 1) and has only 12 leading nonzero bits. Therefore, all of α,
β (both 53 bits), and xi, yi (both 24 bits) can be represented exactly. The final result is

wi = a4 · 2−48 · a2 · 2−24 + (a4 + a2 + 1) · 2−48 · (−(a2 − 1) · 2−24) = 2−72 ,

which cancels down to the 72-nd bit exactly.
This scheme also applies to the other real routines with mixed precisions: c dwaxpby s d()

and c dwaxpby d s(). For the routines involving complex input/output, we first generate the real
counterparts, then apply the complex scalings similarly to the DOT testing as described in Sec-
tion 6.4.1.

6.4.3 Testing HEMM

HEMM (Hermitian matrix matrix product) computes:

C ← α · A ·B + β · C (18)

50

where A is a Hermitian matrix, B is a real or complex matrix, and C is a complex matrix. Each
entry of A satisfies Aij = Āji, the complex conjugate.

For the pure complex cases, i.e., B is complex, we can generate the test matrices similarly to
SPMV, i.e., treating each row as a dot product. When B is real, our DOT test generator generates
real data first and applies a simple complex scaling, see Case 2 of Section 6.4.1. However, this
complex scaling does not work for a Hermitian A, because in each row of A we need different complex
scalars due to conjugation. Therefore, we have designed the following algorithms to generate the
test inputs.

1. B is real.

We generate real and imaginary parts separately and then apply scaling (to make α and β
complex) as follows.

(a) Generate real matrices R1, A1, B,C1 and real scalars α and β using the symmetric test
matrix generator, such that,

R1 = α ·A1 · B + β · C1

here, A1 is real symmetric. R1 is computed in extra precision.
(b) Generate real matrices R2, A2, and C2 with α, β, and B being fixed, using the skew

symmetric test matrix generator, such that,

R2 = α ·A2 · B + β · C2

here, A2 is real skew symmetric (AT
2 = −A2). R2 is computed in extra precision.

(c) Now let R = R1 + i R2, A = A1 + i A2, C = C1 + i C2. Note that A is now Hermitian.
(d) Finally, apply the following scalings to make α and β complex if necessary. There are

four cases to consider, depending on the values of α and β.

values scaling
α β α A B β C R (truth)
1 1 1 1 1 1 1 1
1 any 1 1 1 −i i 1
any 1 i 1 1 1 i i
any any 1 + i 1 1 1 + i 1 1 + i

Note that we can scale R by 1 + i, since no rounding error is introduced by this scaling.

2. B is complex.

We first generate the case with B real in the same way as case 1, except for the scalings in
step (d) for which we apply the following scalings to make matrix B complex.

values scaling
α β α A B β C R (truth)
1 1 1 1 i 1 i i
1 any 1 1 1 + i 1 + i 1 1 + i
any 1 1 + i 1 1 + i 2i 1 2i
any any 1 + i 1 1 + i 2i 1 2i

51

After the test matrices are generated, we then call HEMM routines, and for each entry Cij , we
compute a test ratio using the DOT test ratio computation routine, with Rij as the truth racc. In
the end, we report the maximum ratio among all the n2 ratios.

6.5 Testing TRSV

The TRSV routine solves the system of equations:

x← α · T−1 · b (19)

where T is a unit, non-unit, upper or lower triangular matrix of dimension n × n, and typically x
overwrites b (for mathematical simplicity, we will use different names x and b, even if they occupy
the same storage at different times).

The correct way to solve with extra internal precision PREC is to perform all computations and
keep all intermediate quantities (including components of x) in precision PREC, and then round
x from precision PREC to the desired output precision at the end. If PREC is more precise than
the output precision, this will require an extra working array of n numbers of precision PREC to
store x, before rounding x at the end.

To derive the error bounds below, we use formulas (2) and (3) for real arithmetic, and formulas
(4), (5), and (8) for complex arithmetic. We can either first multiply α · b and then solve for x, or
else solve T x̄ = b and then multiply x = αx̄. In the first case, when we first compute α · b, the error
bound in the absence of overflow is

(T + E)(xcomp + e) = α(b + f) + U (20)

where

|Eij| ≤ nεint · |Tij| ,
|ei| ≤ υout + εout · |xi| ,
|fi| ≤ nεint · |bi| ,
|U | ≤ (2n − 1 + |Tii|) · υint .

On the other hand, if we first perform the substitution and then multiply x = αx̄, the error terms
in Equation (20) are bounded by

|Eij | ≤ nεint · |Tij | ,
|ei| ≤ υout + εout · |xi| ,
|fi| ≤ nεint · |bi| ,
|U | ≤ (2n − 1 + |Tii|) · |α| · υint .

In the case of complex arithmetic, εint should be multiplied by 6+4
√

2, υout should be multiplied
by
√

2, and υint should be multiplied by 3
√

2, as required by bounds (4), (5), and (8). In the absence
of underflow (except possibly on the final rounding of x from PREC to output precision), the term

52

U = 0. In the complete absence of underflow (including the final rounding of x), then U = 0 and
|ei| ≤ εout|xi|.

To derive the bounds with underflow for complex arithmetic we needed to use error bound (8),
which in turn required a quite careful implementation of complex division with scaling to avoid
intermediate underflows. If a less careful implementation of complex division is used, then a con-
forming implementation is still possible because the Standard only specifies the error bound to be
satisfied in the absence of over/underflow. Still, we strongly recommend using the careful imple-
mentation.

Unfortunately, it appears to be difficult to test TRSV systematically using the above error
bounds in the same way that error bound (10) led to a test ratio for the dot product. The reason is
that there is no simple formulas for the smallest E, e, f and U satisfying (20), even in the absence
of underflow. If we did not round x on output, which would make e = 0, then Oettli-Prager’s
Theorem [41] would give a closed form formula for the smallest E and f satisfying (20), using the
residual Tx − αb. This formula exists because E and f appear linearly in (20), and furthermore
each row can be chosen independently. But if e is present, the nonlinear term Ee means no such
formula is available. For all but the most ill-conditioned T (the interesting cases!) the rounding
proportional to εout in e has a larger effect than the much smaller rounding in E and f proportional
to εint � εout, so we need a different testing scheme.

Instead of testing the bound (20) directly, we will use the same DOT-based testing scheme
as before, by examining a single component of x. Consider a lower triangular matrix T , where
the components of the solution vector x are obtained one by one from the following substitution
algorithm:

xi =
α · xi −

∑i−1
j=1 Tij · xj

Tii
, i = 1, ..., n (21)

Therefore, we must test whether 1) the DOT product in the numerator is computed accurately,
and 2) the division is performed accurately. If extra precision is specified, all the components of x
should be computed and stored internally in extra precision. Since the i-th component xi depends
not only on the i-th row of T but also on all the preceding xj, j = 1, ..., i − 1 computed before,
it is difficult to test all the x components simultaneously using a single test matrix. We designed
a scheme that tests the x components one at a time. In this scheme, we generate n sets of input
data, each of which tests only one component of x. The i-th test system is generated as:




x1

x2
...
xi
...

xn



← α ·




T11

0 T22

0 0
. . .

Ti1 Ti2 · · · 1

0 0 0 0
. . .

0 0 0 0 0 Tnn




−1

·




x1

x2
...
xi
...

xn




(22)

In this triangular matrix, only the i-th row (we call this principal row) and the main diagonal are
nonzero, all the other entries are zero. The solution vector is computed by:

xj =
α · xj

Tjj
, j 6= i, compute and store in precision PREC if needed (23)

53

xi = α · xi −
i−1∑
j=1

Tij · xj (24)

In the test system (22), α, the main diagonal of T (Tjj , j 6= i), and the right-hand side vector
(initial x) can be be generated at random. The xj, j 6= i are computed by (23). But we have to
be very careful in generating the principal row of T , because we will use it to validate that xi is
accurately computed by (24). Since (24) is essentially a DOT function, we can use the same testing
technique as used for DOT, which is described in Section 6.2. The only modification is that the
test generator sometimes shall take the fixed input xj, j = 1, ..., i − 1 in extra precision.

In summary, we compute n test ratios for this system. For each non-principal component
xj, j 6= i, we compute a test ratio

|xjcomp − xjacc|
|xjcomp| · 2 · εout

(25)

For the principal component xi, we compute a test ratio using Equation (11).
System (22) is designed to test xi thoroughly. We need to generate n such systems with i

varying from 1 to n in order to test all the components thoroughly.

6.5.1 Testing Complex TRSV

Since TRSV is tested by treating each solution component as a dot product, the same approach to
testing complex dot products that was used before can be used here.

7 Conclusions and Future Work

In this paper, we motivated the introduction of extended and mixed precision BLAS. By considering
the costs and benefits of various styles of extended and mixed precision computation, we justified the
design decisions made in the new BLAS Standard. We also described our macro-based approach for
automatically generating C implementations and testing algorithms for most of the routines. This
demonstrates that the proposed Standard is implementable with a reasonable amount of effort. For
our reference implementation, we assumed that the hardware floating-point arithmetic conformed
to IEEE Standard. Furthermore, our extended precision implementation is efficient, because of the
high degree of data reuse in double-double arithmetic. We believe similarly structured M4 macros
could generate Fortran 77 and Fortran 95 code as well.

There are several avenues we would like to explore in the future. First, we will finish the code
generation and testing for all the remaining functions in Chapter 4 of the BLAS Standard.

Second, we will evaluate the overall performance of the library. Our code in the present form
is meant to be a reference implementation, serving much the same purpose as the existing Fortran
BLAS distribution in Netlib. Our generated code consists only of straightforward loops, without
any architectural optimizations, such as blocking for locality or loop unrolling. Because of the high
degree of data reuse in double-double arithmetic, this yielded good performance for extended preci-
sion, but further improvements are possible, especially for mixed precision. We plan to expand our
macros to automatically generate optimized code in a similar way as ATLAS [50] and PHiPAC [7].

And third, we will investigate the benefit of the new BLAS for more linear algebra algorithms
and applications.

54

Acknowledgments

Yulin Li, Weihua Shen, Berkat Tung and Ben Wanzo contributed codes in the early stage of the
development. Adam Delisse and Hsin-Ying Lin helped with testing on the HP machines.

References

[1] Document for the Basic Linear Algebra Subprograms (BLAS) Standard, May 2000.
http://www.netlib.org/utk/papers/blast-forum.html.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide, Release 3.0.
SIAM, Philadelphia, 1999. 407 pages.

[3] ANSI/IEEE, New York. IEEE Standard for Binary Floating Point Arithmetic, Std 754-1985
edition, 1985.

[4] ANSI/IEEE, New York. IEEE Standard for Radix Independent Floating Point Arithmetic, Std
854-1987 edition, 1987.

[5] D. H. Bailey. A Fortran-90 based multiprecision system. ACM Trans. Math. Soft., 21(4):379–
387, 1995.

[6] David Bailey. A Fortran-90 double-double precision library. http://www.nersc.gov
/∼dhbailey/mpdist/mpdist.html.

[7] J. Bilmes, K. Asanović, J. Demmel, D. Lam, and C.W. Chin. The PHiPAC WWW home page.
http://www.icsi.berkeley.edu/~bilmes/phipac.

[8] L. S. Blackford, J. Choi, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,
G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK Users’ Guide.
SIAM, Philadelphia, 1997. 325 pages.

[9] J. Bleher, A. Roeder, and S. Rump. ACRITH: High-Accuracy Arithmetic – An advanced tool
for numerical computation. In Proceedings of the 7th Symposium on Computer Arithmetic,
Urbana, IL, June 4-6 1985. IEEE Computer Society Press.

[10] R. Brent. A Fortran multiple precision arithmetic package. ACM Trans. Math. Soft., 4:57–70,
1978.

[11] K. Briggs. Doubledouble floating point arithmetic. http://www-epidem.plantsci.cam.ac.uk
/∼kbriggs/doubledouble.html, 1998.

[12] ISO/IEC 9899:1999 Standard for the C programming language (C99). Jan 99 draft available
at http://anubis.dkuug.dk/JTC1/SC22/WG14/www/docs/n869. Final version to be available
from http://www.iso.ch, 1999.

[13] T.J. Dekker. A floating-point technique for extending the available precision. Numerische
Mathematik, 18:224–242, 1971.

55

[14] J. Demmel. Underflow and the reliability of numerical software. SIAM J. Sci. Stat. Comput.,
5(4):887–919, Dec 1984.

[15] J. Demmel and X. Li. Faster numerical algorithms via exception handling. IEEE Trans.
Comp., 43(8):983–992, 1994. LAPACK Working Note 59.

[16] James W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, 1997.

[17] I. Dhillon, G. Fann, and B. Parlett. Application of a new algorithm for the symmetric eigen-
problem to computational quantum chemistry. In Proceedings of the Eighth SIAM Conference
on Parallel Processing for Scientific Computing. SIAM, March 1997.

[18] I. S. Dhillon. A New O(n2) Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector
Problem. PhD thesis, University of California, Berkeley, California, May 1997.

[19] I. S. Dhillon. Current inverse iteration software can fail. BIT, 38(4):685–704, December 1998.

[20] J. Dongarra, J. Bunch, C. Moler, and G. W. Stewart. LINPACK User’s Guide. SIAM,
Philadelphia, PA, 1979.

[21] J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. A Set of Level 3 Basic Linear Algebra
Subprograms. ACM Trans. Math. Soft., 16:1–17, 1990.

[22] J. Dongarra, J. Du Croz, S. Hammarling, and Richard J. Hanson. An Extended Set of FOR-
TRAN Basic Linear Algebra Subprograms. ACM Trans. Math. Soft., 14(1):1–17, March 1988.

[23] S. C. Eisenstat, H. C. Elman, and M. H. Schultz. Variational iterative methods for nonsym-
metric systems of linear equations. SIAM J. Numer. Anal., 20:345–357, 1983.

[24] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore,
MD, Third edition, 1996.

[25] A. Gupta, M. Joshi, G. Karypis, and V. Kumar. PSPASES: A scalable parallel direct solver
for sparse symmetric positive definite systems. http://www.cs.umn.edu/~mjoshi/pspases.

[26] G. Henry. Unix extended precision library for the pentium. http://www.cs.utk.edu
/∼ghenry/distrib/archive.htm, 1998.

[27] N. J. Higham. Accuracy and stability of numerical algorithms. SIAM, Philadelphia, 1996.

[28] Macsyma Inc. Macsyma Mathematics and System Reference Manual, 16th edition. 1996. 589
pages.

[29] W. Kahan. Accurate eigenvalues of a symmetric tridiagonal matrix. Computer Science Dept.
Technical Report CS41, Stanford University, Stanford, CA, July 1966 (revised June 1968).

[30] W. Kahan. Matlab’s Loss is Nobody’s Gain. http://www.cs.berkeley.edu/∼wkahan
/MxMulEps.pdf, 1998.

[31] W. Kahan and J. D. Darcy. How Java’s Floating-Point Hurts Everyone Everywhere.
http://www.cs.berkeley.edu/∼wkahan/JAVAhurt.pdf, 1998.

56

[32] W. Kahan and M. Ivory. private communication, 1997.

[33] W. Kahan and E. LeBlanc. Anomalies in the IBM ACRITH package. In Proceedings of the
7th Symposium on Computer Arithmetic, Urbana, IL, June 4-6 1985. IEEE Computer Society
Press.

[34] D. Knuth. The Art of Computer Programming, volume 2. Addison-Wesley, Reading, MA,
1969.

[35] U. Kulisch and W. Miranker, editors. A new approach to scientific computing. Academic Press,
New York, 1983.

[36] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic Linear Algebra Subprograms for
Fortran usage. ACM Trans. Math. Soft., 5:308–323, 1979.

[37] Xiaoye S. Li and James W. Demmel. Making sparse Gaussian elimination scalable by static
pivoting. In Proceedings of SC98, Orlando, Florida, November 1998.

[38] M4 macro processor. http://www.cs.utah.edu/csinfo/texinfo/m4/m4.html.

[39] O. Møller. Quasi double precision in floating-point arithmetic. BIT, 5:37–50, 1965.

[40] M. Monagan, K. Geddes, K. Heal, G. Labahn, and S. Vorkoetter. Maple V Programming
Guide for Release 5. Springer-Verlag, 1997.

[41] W. Oettli and W. Prager. Compatibility of approximate solution of linear equations with given
error bounds for coefficients and right hand sides. Num. Math., 6:405–409, 1964.

[42] B. Parlett and I. Dhillon. Fernando’s solution to Wilkinson’s problem: An application of
double factorization. Lin. Alg. Appl., 267:247–279, 1997.

[43] B. Parlett and O. Marques. An implementation of the dqds algorithm (Positive case). Lin.
Alg. Appl., 309:217–259, 2000.

[44] M. Pichat. Correction d’une somme en arithmetique à virgule flottante. Numer. Math., 19:400–
406, 1972.

[45] D. Priest. Algorithms for arbitrary precision floating point arithmetic. In P. Kornerup and
D. Matula, editors, Proceedings of the 10th Symposium on Computer Arithmetic, pages 132–
145, Grenoble, France, June 26-28 1991. IEEE Computer Society Press.

[46] Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 7:856–869, 1986.

[47] Jonathan Richard Shewchuk. Adaptive Precision Floating-Point Arithmetic and Fast Robust
Geometric Predicates. Discrete & Computational Geometry, 18:305–363, 1997.

[48] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and C. B.
Moler. Matrix Eigensystem Routines – EISPACK Guide, volume 6 of Lecture Notes in Com-
puter Science. Springer-Verlag, Berlin, 1976.

57

[49] K. Turner and H. F. Walker. Efficient high accuracy solutions with GMRES(m). SIAM J. Sci.
Stat. Comput., 13:815–825, 1992.

[50] R. C. Whaley and J. Dongarra. The ATLAS WWW home page. http://www.netlib.org
/atlas/.

[51] S. Wolfram. Mathematica: A system for doing mathematics by computer. Addison-Wesley,
1988.

58

A Error bound for inner product

To derive the error bound for the inner product (9), we will use the standard model of floating-point
arithmetic, fl(a� b) = (a� b)(1 + δ) + η, where |δ| is bounded by the machine precision ε and |η|
is bounded by the underflow threshold υ. This applies to real or complex arithmetic, with slightly
different values of ε and υ as described in section 6.1. for our reference implementation on an IEEE
machine. In addition, we will use the following notation.

εout = machine precision of the output precision
υout = underflow threshold in the output precision
εint = machine precision error of the internal precision claimed by the routine to be tested
υint = underflow threshold of the internal precision claimed by the routine to be tested
εacc = machine precision of our most accurate precision for computing r (Section 6.2.2)
υacc = underflow threshold of our most accurate precision
S = |α| ·∑i=1,n |xi · yi|+ |β · rin|
rtruth = the correct answer in exact arithmetic
rcomp = r computed by the routine being tested, with the accumulation done in internal

precision εint, and then rounding to the output precision εout

racc = the computed result using precision εacc

The usual error analysis says that the correctly computed and rounded result of

rtruth = α · (
n∑

i=1

xi · yi) + β · rin (26)

should satisfy

|rcomp − rtruth| ≤ (n + 2) · εint · S + (2|α| · n + 3) · υint + εout · |rtruth|+ υout (27)

assuming that the parentheses are respected, i.e. that
∑n

i=1 xi · yi is computed before being multi-
plied by α. This takes into account all possible underflows in the accumulation and final rounding,
including underflows on addition/subtraction, which would not occur with gradual underflow, only
flush-to-zero. We cannot directly compare with this error bound, because we do not know rtruth.
We only know racc, as described in Section 6.2.2, which satisfies

|racc − rtruth| ≤ (n + 2) · εacc · S + (2|α| · n + 3) · υacc (28)

Applying triangle inequality to (27) and (28), we get

|rcomp − racc| ≤ (n + 2) · (εint + εacc) · S + (2|α| · n + 3) · (υint + υacc) + υout + εout · |rtruth| (29)

From error bound (28) we know

|rtruth| ≤ |racc|+ (n + 2) · εacc · S + (2|α| · n + 3) · υacc (30)

Substituting (30) into (29) and omitting the second order terms (εoutεacc and εoutυacc), we obtain
the final error bound that the test code can compute

|rcomp − racc| ≤ (n + 2) · (εint + εacc) · S + (2|α| · n + 3) · (υint + υacc) + υout + εout · |racc| (31)

59

If instead of associating α · (∑n
i=1 xiyi) in the computation we use

∑n
i=1(α · xi) · yi, then the term

(2|α| · n + 3) · (υint + υacc) bounding the underflow error changes to

(
n∑

i=1

|yi|+ 2n + 1) · (υint + υacc) . (32)

Finally, if we intead associate as
∑n

i=1 xi · (α · yi), then the bound on error from underflow changes
to

(
n∑

i=1

|xi|+ 2n + 1) · (υint + υacc) . (33)

Thus, the worst case underflow error for the three ways of inserting parentheses is bounded by

max(2|α| · n + 3,
n∑

i=1

|yi|+ 2n + 1,
n∑

i=1

|xi|+ 2n + 1) · (υint + υacc) . (34)

60

B Smith’s Complex Division Algorithm with Scaling

Let OV denote the overflow threshold and UN denote the underflow threshold, and ε denote the
machine precision. Our scaled version of Smith’s complex division algorithm is as follows, which
computes q = qr + iqi = a+ib

c+id .

Let ab = max(|a|, |b|), cd = max(|c|, |d|).
S = 1
/* Scaling */
if ab > OV/16 then /* scale down a, b */

a = a/16; b = b/16
S = S · 16

endif
if cd > OV/16 then /* scale down c, d */

c = c/16; d = d/16
S = S/16

endif
if ab < UN

ε B then /* scale up a, b */
a = a · B

ε2 ; b = b · B
ε2

S = S/(B/ε2)
endif
if cd < UN

ε B then /* scale up c, d; B is a small integer */
c = c · B

ε2 ; d = d · B
ε2

S = S/(B/ε2)
endif

/* Now a, b, c, d ∈ (UN
ε B,OV/16) */

if (|c| > |d|) then
r = d/c
t = 1

c+d·r
qr + iqi = (a + b · r) · t + i(b− a · r) · t

else
r = c/d
t = 1

d+c·r
qr + iqi = (b + a · r) · t + i(−a + b · r) · t

endif

/* Scale back */
qr = qr · S; qi = qi · S

By careful error analysis, we can show that the error of this algorithm satisfies the bound:

fl(a/b) = (a/b)(1 + δ) + η

where |δ| ≤ (5 + 3
√

2 + (2 +
√

2)/B) · ε and |η| ≤ √2·UN. In our implementation, we choose B = 2,
so |δ| ≤ (6 + 4

√
2) · ε.

61

